Hộp thứ nhất chứa 10 thẻ được đánh số thứ tự từ 1 đến 10 gồm 5 thẻ mang số lẻ và 5 thẻ mang số chẵn.
Hộp thứ hai chứa 9 thẻ đánh số thứ tự từ 1 đến 9 gồm 5 thẻ số lẻ và 4 thẻ số chẵn.
Chọn ngẫu nhiên mỗi hộp 1 thẻ thì số cách chọn là:
%20%3D%2010.9%20%3D%2090)
Gọi biến cố A: “Tích thu được là số chẵn” khi đó ta xét 3 trường hợp sau:
TH1: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.
TH2: Hộp thứ nhất chọn được thẻ chẵn và hộp thứ hai chọn được thẻ lẻ có: 5.5 = 25 cách.
TH3: Hộp thứ nhất chọn được thẻ lẻ và hộp thứ hai chọn được thẻ chẵn có: 5.4 = 20 cách.
Theo quy tắc cộng ta có:
%20%3D%2020%20%2B%2025%20%2B%2020%20%3D%2065)
Vậy xác suất cần tìm là: %20%3D%0A%5Cfrac%7Bn(A)%7D%7Bn(%5COmega)%7D%20%3D%20%5Cfrac%7B65%7D%7B90%7D%20%3D%20%5Cfrac%7B13%7D%7B18%7D)