Đề thi học kì 2 Toán lớp 10 Kết nối tri thức Đề 5

Mô tả thêm: Đề thi HK2 Toán 10 được biên soạn gồm 40 câu hỏi trắc nghiệm chia thành 4 mức độ bám sát chương trình sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Tam thức bậc hai f(x) =  − x2 + 3x − 2 nhận giá trị không âm khi và chỉ khi

    f(x) = - x^{2} + 3x - 2 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp ánx ∈ [1; 2] .

  • Câu 2: Nhận biết

    Cho tập A có n phần tử (n ∈ ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

     Số các chỉnh hợp chập k của n phần tử là A_n^k=n(n - 1)(n - 2)...(n - k + 1).

  • Câu 3: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?

    Loại các đáp án x^{2} + y^{2} - 2xy - 1 =
0.x^{2} - y^{2} - 2x + 3y - 1 =
0. vì không có dạng x^{2} + y^{2} -
2ax - 2by + c = 0.

    Xét đáp án: x^{2} + y^{2} - x - y + 9 = 0
ightarrow a = \frac{1}{2},\ \ b = \frac{1}{2},\ c = 9 ightarrow
a^{2} + b^{2} - c < 0 ightarrowloại.

    Xét đáp án : x^{2} + y^{2} - x = 0
ightarrow a = \frac{1}{2},\ b = c = 0 ightarrow a^{2} + b^{2} - c
> 0 ightarrowChọn đáp án này.

  • Câu 4: Thông hiểu

    Cho elip đi qua điểm A(2; - 2) và có độ dài trục lớn gấp đôi độ dài trục bé. Phương trình chính tắc của elip là:

    Phương trình chính tắc của elip có dạng \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1;(a,b
> 0)

    Theo bài ra ta có hệ phương trình:

    \left\{ \begin{matrix}
a = 2b \\
\frac{2^{2}}{a^{2}} + \frac{( - 2)^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{4}{a^{2}} + \frac{4}{b^{2}} = 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4b^{2} \\
\frac{5}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 20 \\
b^{2} = 5 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip là: \frac{x^{2}}{20} + \frac{y^{2}}{5} =
1.

  • Câu 5: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(m - 1;1),B(2;2 - 2m),C(m + 3;3) với m là tham số. Tìm giá trị của tham số m để ba điểm A,B,C thẳng hàng?

    Ta có:

    \left\{ \begin{matrix}
\overrightarrow{AB} = (3 - m;3 - 2m) \\
\overrightarrow{AC} = (4;4) \\
\end{matrix} ight.

    Ba điểm A, B, C thẳng hàng khi và chỉ khi \overrightarrow{AB};\overrightarrow{AC} cùng phương với nhau.

    Điều đó xảy ra khi và chỉ khi \frac{3 -
m}{4} = \frac{3 - 2m}{4} \Leftrightarrow m = 0

    Vậy m = 0 thì ba điểm A, B, C thẳng hàng.

  • Câu 6: Nhận biết

    Một vectơ pháp tuyến của đường thẳng d:2x - y - 1 = 0 là:

    Một vectơ pháp tuyến của đường thẳng d:2x
- y - 1 = 0\overrightarrow{n}(2; - 1).

  • Câu 7: Nhận biết

    Số hạng thứ 13 trong khai triển (2 - x)^{15} bằng?

    Ta có (2 - x)^{15} = \sum_{k =
0}^{15}{C_{15}^{k}.2^{15 - k}.( - x)^{k}}

    Số hạng thứ 13 trong khai triển tương ứng với k = 12.\Rightarrow C_{15}^{12}.2^{15 - 12}.( - x)^{12} =
3640x^{12}.

  • Câu 8: Thông hiểu

    Cho f(x)=ax^{2}+bx+c(a≠0)Δ=b^{2}−4ac<0. Khi đó mệnh đề nào đúng?

     Khi \Delta<0 thì f(x) luôn cùng dấu với hệ số a \text{       } \forall x\in \mathbb{R}. Do đó nó không đổi dấu.

  • Câu 9: Nhận biết

    Tổng các nghiệm của phương trình \sqrt{2x - 1} + x^{2} - 3x + 1 = 0 là :

    Ta có \sqrt{2x - 1} + x^{2} - 3x + 1 = 0\Leftrightarrow \sqrt{2x - 1} = - x^{2} + 3x - 1

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\2x - 1 = \left( - x^{2} + 3x - 1 ight)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\(x - 1)^{2}(x^{2} - 4x + 2) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x^{2} - 4x + 2 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}- x^{2} + 3x - 1 \geq 0 \\\left\lbrack \begin{matrix}x = 1 \\x = 2 \pm \sqrt{2} \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = 2 - \sqrt{2} \\\end{matrix} ight.

    Phương trình có nghiệm là x = 1x = 2 - \sqrt{2}.

    Vậy tổng các nghiệm của phương trình là 1+ 2 - \sqrt{2} = 3 - \sqrt{2}.

  • Câu 10: Nhận biết

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 6x + 8y - 1 = 0. Xác định tâm và bán kính đường tròn đó?

    Ta có phương trình đường tròn: (C):x^{2}
+ y^{2} - 6x + 8y - 1 = 0 có: a =
3;b = - 4,c = - 1 nên đường tròn (C) có tâm I(3; - 4) và bán kính R = \sqrt{a^{2} + b^{2} - c} =
\sqrt{26}.

  • Câu 11: Thông hiểu

    Trong hệ trục tọa độ Oxy cho hai điểm A(3; - 1),B( - 6;2). Chọn đáp án không phải là phương trình tham số của đường thẳng AB.

    Đường thẳng AB có một vectơ chỉ phương là \overrightarrow{AB} = ( - 9;3) suy ra vectơ chỉ phương \overrightarrow{u} = ( -
3;1)

    Phương trình \left\{ \begin{matrix}
x = 3 + 3t \\
y = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) không thỏa mãn vì có vectơ chỉ phương \overrightarrow{v} = (3;1) không cùng phương với \overrightarrow{u} = ( -
3;1).

  • Câu 12: Thông hiểu

    Cho bất phương trình x^{2}−8x+7≥0 . Trong các tập hợp sau đây, tập nào có chứa phần tử không phải là nghiệm của bất phương trình.

     Ta có: x^{2}−8x+7≥0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x \le 1}\\{x \ge 7}\end{array}} ight.. Suy ra S=[-\infty;1) \cup [7;+\infty).

    Nhận xét: [6;+\infty) không thuộc S.

  • Câu 13: Nhận biết

    Một hộp có 3 viên bi trắng, 2 viên bi đen và 2 viên bi vàng. Hỏi có bao nhiêu cách lấy ngẫu nhiên 2 viên bi từ hộp đó.

     Chọn 2 viên từ hộp 7 viên có: C_7^2 = 21 (cách).

  • Câu 14: Nhận biết

    Số hạng chứa x^{5} trong khai triển (x - 2)^{5} là:

    Công thức số hạng tổng quát: C_{5}^{k}.x^{k}.( - 2)^{5 - k} \Rightarrow k =
5 ta được số hạng chứa x^{5} là: x^{5}

  • Câu 15: Thông hiểu

    Trong mặt phẳng Oxy cho các điểm A(2;6),B(3;5),C( - 1; - 3). Phương trình đường tròn đi qua ba điểm là:

    Gọi phương trình đường tròn là: (C):x^{2}
+ y^{2} - 2ax - 2by + c = 0 với a^{2} + b^{2} - c > 0

    Vì đường tròn đi qua ba điểm A(2;6),B(3;5),C( - 1; - 3) nên ta có hệ phương trình:

    \left\{ \begin{matrix}2^{2} + 6^{2} - 2.2.a - 2.6.b + c = 0 \\3^{2} + 5^{2} - 2.3.a - 2.5.b + c = 0 \\( - 1)^{2} + ( - 3)^{2} - 2.( - 1).a - 2.( - 3).b + c = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4a + 12b - c = 40 \\6a + 10b - c = 34 \\2a + 6b + c = - 10 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 1 \\b = 2 \\c = - 20 \\\end{matrix} ight.

    Vậy phương trình đường tròn cần tìm là: (C):x^{2} + y^{2} + 2x - 4y - 20 = 0.

  • Câu 16: Nhận biết

    Số nghiệm của phương trình x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)} là bao nhiêu?

    Điều kiện: (4 - x)(x + 2) \geq 0
\Leftrightarrow x \in \lbrack - 2;\ 4brack.

    x^{2} - 2x - 8 = 4\sqrt{(4 - x)(x + 2)}\Leftrightarrow x^{2} - 2x - 8 = 4\sqrt{- \left( x^{2} - 2x - 8ight)}(1).

    Đặt t = \sqrt{- \left( x^{2} - 2x - 8
ight)}, t \geq 0 \Leftrightarrow t^{2} = - \left( x^{2} - 2x - 8
ight) \Leftrightarrow x^{2} - 2x - 8 = - t^{2}.

    (1) \Leftrightarrow - t^{2} = 4t\Leftrightarrow t^{2} + 4t = 0 \Leftrightarrow \left\lbrack\begin{matrix}t = 0(n) \\t = - 4(l) \\\end{matrix} ight.\  \Leftrightarrow \sqrt{- \left( x^{2} - 2x - 8ight)} = 0 \Leftrightarrow - \left( x^{2} - 2x - 8 ight) = 0\Leftrightarrow \left\lbrack \begin{matrix}x = - 2(n) \\x = 4(n) \\\end{matrix} ight..

    Vậy phương trình đã cho có hai nghiệm.

  • Câu 17: Thông hiểu

    Trong khai triển nhị thức (2x^{2}+\frac{1}{x})^{n} hệ số của x^{3}2^{2}C_{n}^{1}. Giá trị của n là

    Khai triển biểu thức như sau:

    \begin{matrix}  {\left( {2{x^2} + \dfrac{1}{x}} ight)^n} = \sum\limits_{k = 0}^n {C_n^k.{{\left( {2{x^2}} ight)}^{n - k}}.{{\left( {\dfrac{1}{x}} ight)}^k}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2\left( {n - k} ight) - k}}}  \hfill \\   = \sum\limits_{k = 0}^n {C_n^k{{.2}^{n - k}}.{x^{2n - 3k}}}  \hfill \\ \end{matrix}

    Theo bài ra ta có:

    Hệ số của x^{3}2^{2}C_{n}^{1} khi đó: k = 1

    n - k = 3 \Rightarrow n = 3

  • Câu 18: Thông hiểu

    Biết rằng n\mathbb{\in N} thỏa mãn biểu thức A_{n}^{2} - C_{n}^{2} = 19900. Tính giá trị biểu thức B =\frac{n.C_{2n}^{n}}{C_{2n}^{n + 1}}?

    Ta có:

    A_{n}^{2} - C_{n}^{2} =19900

    \Leftrightarrow \frac{n!}{(n - 2)!} -\frac{n!}{2!(n - 2)!} = 19900

    \Leftrightarrow (n - 1).n = 39800\Leftrightarrow n = 200

    Lại có:

    B = \frac{n.C_{2n}^{n}}{C_{2n}^{n + 1}}= \frac{n(2n)!}{n!.n!} = \frac{(n + 1)!.(n - 1)!}{(2n)!} = n +1

    \Rightarrow B = 201

  • Câu 19: Vận dụng

    Khai triển (\sqrt{5} - \sqrt[4]{7})^{124}. Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?

    Ta có (\sqrt{5} - \sqrt[4]{7})^{124} =
\sum_{k = 0}^{124}{C_{124}^{k}.( - 1)^{k}.5^{\frac{124 -
k}{2}}.7^{\frac{k}{4}}}

    Số hạng hữu tỉ trong khai triển tương ứng với \left\{ \begin{matrix}
\frac{124 - k}{2}\mathbb{\in Z} \\
\frac{k}{4}\mathbb{\in Z} \\
\end{matrix} ight.\  \Leftrightarrow k \in \left\{ 0;4;8;12;...;124
ight\}.

    Vậy số các giá trị k là: \frac{124 - 0}{4} + 1 = 32.

  • Câu 20: Nhận biết

    Gieo ngẫu nhiên một xon xúc xắc cân đối, đồng chất 1 lần. Gọi A là biến cố “số chấm xuất hiện trên con xúc xắc bé hơn 3”. Biến cố đối của biến cố A là:

    Biến cố đối của biến cố A là “Số chấm xuất hiện trên con xúc xắc không bé hơn 3.”

  • Câu 21: Nhận biết

    Tìm giá trị tham số m để đường thẳng \left( d_{1} ight):2x + y + 4 = 0 song song với đường thẳng \left( d_{2} ight):(m
- 3)x + y - 1 = 0?

    Để hai đường thẳng đã cho song song với nhau thì

    \frac{m + 3}{2} = \frac{1}{1}
\Leftrightarrow m = - 1

    Vậy m = -1 thì hai đường thẳng song song với nhau.

  • Câu 23: Vận dụng

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 24: Thông hiểu

    Cho hàm số y=ax^{2}+bx+c(a≠0)có đồ thị như hình sau. Khẳng định nào sau đây đúng?

     Từ đồ thị hàm số, nhận xét:

    Bề lõm hướng lên trên suy ra a>0.

    Hàm số cắt trục tung tại tung độ âm c<0.

    Chọn đáp án a>0;b<0;c<0.

  • Câu 25: Nhận biết

    Cho A là biến cố liên quan đến phép thử có không gian mẫu \Omega. Chọn khẳng định sai trong các khẳng định sau.

    Theo định nghĩa xác suất cổ điển, cho phép thử T có không gian mẫu \Omega. Giả thiết rằng các kết quả có thể của T là đồng khả năng, khi đó cho A là biến cố có liên quan đến phép thử có không gian mẫu \Omega. Thì xác suất của biến cố A được tính bởi công thức P(A) = \frac{n(A)}{n(\Omega)}, P(\varnothing) = 0, P(\Omega) = 1 , trong đó n(A);n(\Omega) tương ứng là số phần tử của biến cố A và của không gian mẫu.

    Vậy khẳng định sai là: P(\Omega) = 0.

  • Câu 26: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 27: Nhận biết

    Tam thức nào sau đây nhận giá trị âm với x < 2

    Bảng xét dấu của  − x2 + 5x − 6

  • Câu 28: Thông hiểu

    Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng \Delta:ax + by + c = 0 và hai điểm M\left( x_{m}\ ;\ y_{m} ight), N\left( x_{n};y_{n} ight) không thuộc \Delta. Chọn khẳng định đúng trong các khẳng định sau:

    M,\ N cùng phía so với \Delta thì \left( ax_{m} + by_{m} + c ight)\left( ax_{n} + by_{n} + c ight) luôn cùng dấu.

    Chọn M,\ N cùng phía so với \Delta khi \left( ax_{m} + by_{m} + c ight).\left( ax_{n} +
by_{n} + c ight)\  > \ 0.

  • Câu 29: Nhận biết

    Tính khoảng cách từ điểm M(2;4) đường thẳng (\Delta):3x + 4y + 3 = 0?

    Ta có khoảng cách từ điểm M đến đường thẳng (\Delta):3x + 4y + 3 = 0 là:

    d(M;\Delta) = \frac{|3.2 + 4.4 +
3|}{\sqrt{3^{2} + 4^{2}}} = 5

    Vậy khoảng cách cần tìm bằng 5.

  • Câu 30: Vận dụng

    Phương trình \sqrt[3]{\frac{2x}{x + 1}} + \sqrt[3]{\frac{1}{2} +\frac{1}{2x}} = 2 có nghiệm thuộc khoảng:

    Đặt t = \sqrt[3]{\frac{2x}{x +1}}. Phương trình đã cho trở thành: t+ \frac{1}{t} = 2 \Leftrightarrow t = 1

    Ta được \sqrt[3]{\frac{2x}{x + 1}} = 1\Leftrightarrow x = 1 thuộc [1 ; 2).

  • Câu 31: Thông hiểu

    Cho hàm số f(x) = mx^{2} – 2mx + m – 1. Giá trị của m để f(x) < 0, ∀x ∈ ℝ.

    Để f\left( x ight) < 0 với \forall x \in \mathbb{R}  \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a < 0} \\   {\Delta  < 0} \end{array}} ight.

    \begin{matrix}   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 0} \\   {\Delta ' = {m^2} - m\left( {m - 1} ight) < 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 0} \\   {m < 0} \end{array}} ight. \Leftrightarrow m < 0 \hfill \\ \end{matrix}

  • Câu 32: Vận dụng cao

    Trên màn hình ra-đa của đài kiểm soát không lưu sân bay A có hệ trục tọa độ Oxy (như hình vẽ) trong đó đơn vị trên mỗi trục tính theo ki – lô – mét và đài kiểm soát được coi là gốc tọa độ O(0;0).

    Nếu máy bay trong phạm vi cách đài kiểm soát 500km thì sẽ hiển thị trên màn hình ra-đa. Một máy bay khởi hành từ sân bay X lúc 10 giờ. Sau thời gian t (giờ) vị trí của máy bay được xác định bởi điểm M có tọa độ như sau: \left\{ \begin{matrix}x = \dfrac{1600}{3} - \dfrac{1400}{3}.t \\y = \dfrac{1900}{3} - \dfrac{1400}{3}.t \\\end{matrix} ight.. Máy bay ra khỏi màn hình ra-đa lúc

    Gọi M là vị trí máy báy

    Máy bay ra khỏi màn hình ra đa khi:

    Ta có:

    OM > 500

    \Leftrightarrow \sqrt{\left(
\frac{1600}{3} - \frac{1400}{3}t ight)^{2} + \left( \frac{1900}{3} -
\frac{1400}{3}.t ight)^{2}} > 500

    \Leftrightarrow \left( \frac{1600}{3} -
\frac{1400}{3}t ight)^{2} + \left( \frac{1900}{3} - \frac{1400}{3}.t
ight)^{2} > 500^{2}

    \Leftrightarrow \frac{3920000}{9}.t^{2}
- 1088888,899.t + \frac{6170000}{9} - 500^{2} > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
t < 0,5 \\
t > 2 \\
\end{matrix} ight.

    Vậy lúc hơn 12 giờ là lúc máy bay ra khỏi màn hình ra đa.

  • Câu 33: Thông hiểu

    Tìm giá trị của tham số m sao cho đường thẳng (\Delta):(m - 1)y + mx - 2 =
0 là tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 6x + 5 = 0.

    Đường tròn (C) có tâm I(3; 0) và bán kính R = 2

    Để (\Delta) là tiếp tuyến của đường tròn (C) thì ta phải có:

    d(I;\Delta) = \frac{|3m - 2|}{\sqrt{(m -
1)^{2} + m^{2}}} = 2

    \Leftrightarrow 4\left( 2m^{2} - 2m + 1
ight) = 9m^{2} - 12m + 4

    \Leftrightarrow m^{2} - 4m = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 4 \\
\end{matrix} ight.

  • Câu 34: Thông hiểu

    Phương trình: \sqrt{x+2}=4-x có bao nhiêu nghiệm?

     Điều kiện: x + 2 \geqslant 0 \Leftrightarrow x \geqslant  - 2

    \begin{matrix}  \sqrt {x + 2}  = 4 - x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {4 - x \geqslant 0} \\   {x + 2 = {{\left( {4 - x} ight)}^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {x + 2 = 16 - 8x + {x^2}} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {{x^2} - 9x + 14 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \leqslant 4} \\   {\left[ {\begin{array}{*{20}{c}}  {x = 2\left( {tm} ight)} \\   {x = 7\left( {ktm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ta được x=2 thỏa mãn

    Vậy nghiệm của phương trình là x=2

  • Câu 35: Thông hiểu

    Tính giá trị biểu thức: A = C_{2016}^{1} + C_{2016}^{2} + C_{2016}^{3} +
... + C_{2016}^{2016}.

    Xét khai triển (x + 1)^{2016} =
C_{2016}^{0}x^{2016} + C_{2016}^{1}.x^{2015} + ... +
C_{2016}^{2016}

    Thay x = 1 ta được:

    (1 + 1)^{2016} = C_{2016}^{0}.1^{2016} +
C_{2016}^{1}.1^{2015} + ... + C_{2016}^{2016}

    = C_{2016}^{0} + C_{2016}^{1} + ... +
C_{2016}^{2016} = 1 + A

    \Leftrightarrow 1 + A =
2^{2016}

    \Leftrightarrow A = 2^{2016} -
1

  • Câu 36: Vận dụng cao

    Trên mặt phẳng tọa độ Oxy, ta xét một hình chữ nhật ABCD với các điểm A( - 2;0),B( - 2;2),C(4;2),D(4;0) (như hình vẽ):

    Một con cóc nhảy trong hình chữ nhật tính cả trên cạnh hình chữ nhật sao cho chân của nó luôn đáp xuống mặt phẳng tại các điểm có tọa độ nguyên (tức là điểm có cả hoành độ và tung độ đều nguyên). Tính xác suất để con cóc đáp xuống các điểm M(x;y)x +
y < 2.

    Số các điểm có tọa độ nguyên thuộc hình chữ nhật là 7.3 = 21 điểm vì \left\{ \begin{matrix}
x \in \left\{ - 2; - 1;0;1;2;3;4 ight\} \\
y \in \left\{ 0;1;2 ight\} \\
\end{matrix} ight.

    Để con có đáp xuống các điểm M(x;y)x +
y < 2 thì con cóc sẽ nhảy trong khu vực hình thang BEIA. Để M(x;y) có tọa độ nguyên thì \left\{ \begin{matrix}
x \in \left\{ - 2; - 1;0;1;2 ight\} \\
y \in \left\{ 0;1;2 ight\} \\
\end{matrix} ight.

    Nếu x \in \left\{ - 2; - 1
ight\} thì y \in \left\{ 0;1;2
ight\} suy ra có: 2.3 =
6 điểm

    Nếu x = 0 thì y \in \left\{ 0;1 ight\} suy ra có: 1.2 = 2 điểm

    Nếu x = 1 thì y = 0 suy ra có: 1 điểm

    Số kết quả thuận lợi cho biến cố: “Con cóc đáp xuống các điểm M(x;y)x +
y < 2” là: 6 + 2 + 1 =
9

    Vậy xác suất của biến cố: “Con cóc đáp xuống các điểm M(x;y)x +
y < 2” là: \frac{9}{21} =
\frac{3}{7}.

  • Câu 37: Nhận biết

    Cho parabol (P) có phương trình y = 3x2 − 2x + 4. Tìm trục đối xứng của parabol này.

    + Có a = 3; b =  − 2; c = 4.

    + Trục đối xứng của parabol là x = \frac{-
b}{2a} = \frac{1}{3}.

  • Câu 38: Thông hiểu

    Chọn ngẫu nhiên một gia đình có 4 người con và quan sát giới tính của bốn người con này. Xác suất của biến cố hai con đầu là con trai bằng:

    Ta có: n(\Omega) = 2^{4} =16

    Gọi A là biến cố “Hai con đầu là con trai”

    \Rightarrow A = \left\{TTGG;TTGT;TTTG;TTTT ight\}

    \Rightarrow n(A) = 4

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =\frac{4}{16} = \frac{1}{4}.

  • Câu 39: Thông hiểu

    Gọi \alpha là góc tạo bởi hai đường thẳng (\Delta):x + 3y - 2 = 0(\Delta'):x - 2y + 5 = 0. Khi đó độ lớn của \alpha bằng:

    Ta có:

    \cos\alpha = \frac{\left| 1.1 + 3.( - 2)
ight|}{\sqrt{1^{2} + 3^{2}}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Rightarrow \alpha = 45^{0}

    Vậy góc tạo bởi hai đường thẳng bằng 45^0.

  • Câu 40: Thông hiểu

    Có bao nhiêu cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh?

     Số cách lập nhóm có hai học sinh là: C_{10}^2 cách

    Số học sinh còn lại 8 học sinh (vì 2 học sinh lập nhóm đầu tiên)

    => Số cách lập nhóm có 3 học sinh là: C_8^3 cách

    Số học sinh còn lại còn 5 học sinh để lập nhóm 5 học sinh 

    => Số cách lập nhóm 5 học sinh là: C_5^5 cách

    Mà các cách lập nhóm liên quan đến nhau

    => Số cách lập các nhóm gồm 2, 3, 5 học sinh từ một tổ có 10 học sinh là

    C_{10}^{2}\times C_{8}^{3}\times C_{5}^{5} cách.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 2 Toán lớp 10 Kết nối tri thức Đề 5 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo