Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 2: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 3: Thông hiểu

    Cho số phức z thỏa mãn \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}}. Môđun của số phức \overline z  + iz là:

     Ta có: \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}} = 4 - 4i\, \to \,\left| {\overline z  + iz} ight| = 0

  • Câu 4: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 5: Vận dụng

    Cho hai số thực bc (c>0). Kí hiệu A , B là hai điểm biểu diễn hai nghiệm phức của phương trình {z^2} + 2bz + c = 0 trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác OAB là tam giác vuông (O là gốc tọa độ).

     Ta có: {z^2} + 2bz + c = 0 . Vì {z_1} + {z_2} =  - 2b{z_1}{z_2} = c là số thực.

    \Rightarrow {z_2} = \overline {{z_1}} \Rightarrow \left| {{z_2}} ight| = \left| {\overline {{z_1}} } ight| = \left| {{z_1}} ight|. Vậy ta có: {x_1} = bx_1^2 + y_2^2 = c .

    Ta có: {z_1} = {x_1} + {y_1}i \Rightarrow A\left( {{x_1};{y_1}} ight); {z_1} = {x_2} + {y_2}i \Rightarrow B(x_2;y_2).

    Để tam giác OAB là tam giác vuông tại O =  > \overrightarrow {OA} .\overrightarrow {OB}  = 0

    \Rightarrow {x_1}{x_2} + {y_1}{y_2} = 0\Rightarrow x_1^2-y_1^2=0\Rightarrow x_1^2=y_1^2\Rightarrow c=2b^2.

  • Câu 6: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 7: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng chéo nhau d_{1}:\frac{x - 3}{1} = \frac{y + 1}{- 1} =\frac{z - 4}{1},d_{2}:\frac{x - 2}{2} = \frac{y - 4}{- 1} = \frac{z +3}{4}. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1; -
1;1),\overrightarrow{u_{2}} = (2; - 1;4)

    Gọi ∆ là đường vuông góc chung giữa d_{1}d_{2}, suy ra ∆ có vectơ chỉ phương \overrightarrow{u_{\Delta}} = \left\lbrack
\overrightarrow{u_{1}},\overrightarrow{u_{2}} ightbrack = ( - 3; -
2;1)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
M(3 + m; - 1 - m;4 + m) \\
N(2 + 2n;4 - n; - 3 + 4n) \\
\end{matrix} ight., khi đó ta có \overrightarrow{MN} = ( - m + 2n - 1;m - n + 5; -
m + 4n - 7)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{MN} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{MN} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 3m + 7n - 13 = 0\  \\
- 7m + 21n - 35 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = - 2 \\
n = 1 \\
\end{matrix} ight.

    Từ đó suy ra đường thẳng ∆ có véc tơ chỉ phương \overrightarrow{u_{\Delta}} và đi qua điểm M(1; 1; 2).

    Vậy ta có phương trình đường thẳng: \Delta:\frac{x - 1}{3} = \frac{y - 1}{2} = \frac{z
- 2}{- 1}

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

  • Câu 9: Nhận biết

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} = (1;3;4). Hãy chọn vectơ cùng phương với \overrightarrow{a}?

    Ta có: \overrightarrow{b} cùng phương với \overrightarrow{a} khi \overrightarrow{b} =
k.\overrightarrow{a};\left( k\mathbb{\in R} ight). Khi đó đáp án cần tìm là \overrightarrow{b} = ( - 2; -
6; - 8) (vì \overrightarrow{b} = -2(1;3;4) = - 2\overrightarrow{a}).

  • Câu 10: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 11: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = 3x + \cos 3x

     Ta có: \int {\left( {3x + \cos 3x} ight)dx = \frac{{3{x^2}}}{2} + \frac{{\sin 3x}}{3} + C}

  • Câu 12: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 13: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 2y + z + 2017 = 0, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của (P)?

    Ta có phương trình mặt phẳng (P):2x - 2y
+ z + 2017 = 0 nên có một vectơ pháp tuyến của mặt phẳng (P) là: \overrightarrow{n_{(P)}} = (2; - 2;1)

    Mặt khác \overrightarrow{n} = (4; -
4;2) cùng phương với \overrightarrow{n_{(P)}} = (2; - 2;1)

    Do đó \overrightarrow{n} = (4; -
4;2) là một vectơ pháp tuyến của (P):2x - 2y + z + 2017 = 0.

  • Câu 14: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng d đi qua hai điểm A(0;1;2),B(1;3;4) là:

    Ta có \overrightarrow{AB} =
(1;2;2) là một vectơ chỉ phương của đường thẳng d.

    d đi qua điểm B(1;3;4), nên có phương trình là: \left\{ \begin{matrix}
x = 1 + t \\
y = 3 + 2t \\
z = 4 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 15: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 16: Nhận biết

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 17: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho 2 điểm A(−2; 1; 3), B(3; −2; 4), đường thẳng d:\frac{x - 1}{2} = \frac{y
- 6}{11} = \frac{z + 1}{- 4}và mặt phẳng (P): 41x − 6y + 54z + 49 = 0. Đường thẳng (d) đi qua B, cắt đường thẳng ∆ và mặt phẳng (P) lần lượt tại C và D sao cho thể tích của 2 tứ diện ABCOOACD bằng nhau, biết (d) có một vectơ chỉ phương là \overrightarrow{u} = (4;b;c). Tính b + c.

    Hình vẽ minh họa

    Ta có 1 = \frac{V_{OABC}}{V_{OACD}} =\dfrac{\dfrac{1}{3}d\left( O;(ABC) ight).S_{ABC}}{\dfrac{1}{3}d\left(O;(ACD) ight).S_{ACD}} = \dfrac{S_{ABC}}{S_{ACD}} =\frac{BC}{CD}

    Nên BC = CD. Vì C ∈ ∆ \Rightarrow C(2t +
1;11t + 6; - 4t - 1)

    C là trung điểm của BD nên D(4t - 1;22t +
14; - 8t - 6).

    Điểm D ∈ (P) nên 41(4t − 1) − 6(22t + 14) + 54(−8t − 6) + 49 = 0 ⇔ t = −1

    ⇒ C(−1; −5; 3).

    \overrightarrow{CB} = (4;3;1) =
\overrightarrow{u} là vectơ chỉ phương của đường thẳng d.

    Vậy b = 3, c = 1 ⇒ b + c = 4

  • Câu 18: Nhận biết

    Cho số phức z = 1 + 2i, giá trị của số phức w = z + i\overline z là?

    Ta có: w = z + i\overline z  = \left( {1 + 2i} ight) + i\left( {1 - 2i} ight) = 3 + 3i

  • Câu 19: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 20: Thông hiểu

    Tính tích phân A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \dfrac{\pi}{3}ight)}dx} bằng

    Ta có:

    A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \frac{\pi}{3}ight)}dx} = \left. \ \tan\left( x - \frac{\pi}{3} ight)ight|_{0}^{\frac{\pi}{2}}

    = \tan\frac{\pi}{6} - \tan\left( -
\frac{\pi}{3} ight) = \frac{4\sqrt{3}}{3}

  • Câu 21: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1. Tìm \min \left| {{z^3} - z + 2} ight|.

     Gọi z = a + bi, với a, b \in \mathbb{R}.

    Theo giả thiết ta có \left| z ight| = 1 suy ra z.\bar z = 1{a^2} + {b^2} = 1, - 1 \le a \le 1.

    Ta có \left| {{z^3} - z + 2} ight| = \left| {{z^3} - z + 2z.\bar z} ight| = \left| z ight|\left| {{z^2} - 1 + 2\bar z} ight|

    = \left| {{a^2} - {b^2} + 2a - 1 + \left( {2ab - 2b} ight)i} ight| = \left| {2\left( {{a^2} + a - 1} ight) + 2b\left( {a - 1} ight)i} ight|

    = \sqrt {4{{\left( {{a^2} + a - 1} ight)}^2} + 4{b^2}{{\left( {a - 1} ight)}^2}}

    = \sqrt {16{a^3} - 4{a^2} - 16a + 8}  = 2\sqrt {4{a^3} - {a^2} - 4a + 2}

    Xét hàm số f\left( x ight) = 4{x^3} - {x^2} - 4x + 2 trên \left[ { - 1;\,1} ight].

    Ta có f'\left( x ight) = 12{x^2} - 2x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{2}{3}\\x =  - \dfrac{1}{2}\end{array} ight..

    Ta có f\left( { - 1} ight) = 1;f\left( 1 ight) = 1;f\left( {\frac{2}{3}} ight) = \frac{2}{{27}};f\left( { - \frac{1}{2}} ight) = \frac{{13}}{4}.

    Vậy \mathop {\min }\limits_{\left[ { - 1;\,1} ight]} f\left( x ight) = f\left( {\frac{2}{3}} ight) = \frac{2}{{27}}.

    Do đó \min \left| {{z^3} - z + 2} ight| = \frac{{2\sqrt 6 }}{9} khi a = \frac{2}{3}b =  \pm \frac{{\sqrt 5 }}{3}.

  • Câu 22: Vận dụng cao

    Cho ba mặt phẳng \left( P ight):2x + 2y - 6z + 5 = 0;\,\,\,\,\left( Q ight):3x + 4y + 2z - 6 = 0(R) qua hai điểm A\left( {1,3, - 1} ight);\,\,\,\,B\left( { - 2,4, - 1} ight) và vuông góc với (R)  . Câu nào sau đây đúng? (Có thể chọn nhiều hơn 1 đáp án)

    Theo đề bài ta có \left( R ight) \bot \left( P ight) \Rightarrow Một vecto chỉ phương của (R) là: \overrightarrow {{n_P}}  = \left( {2,2, - 6} ight) \Rightarrow \overrightarrow a  = \left( { - 1, - 1,3} ight)

    => A đúng

    Vecto chỉ phương thứ hai của (R) là: \overrightarrow b  = \overrightarrow {AB}  = \left( { - 3,1,1} ight)

    Một vecto pháp tuyến của (R) là: \overrightarrow {{n_R}}  = \left[ {\overrightarrow a ,\overrightarrow b } ight] =  - 4\left( {1,2,1} ight)

    \Rightarrow \overrightarrow n  = 4\left( {1,2,1} ight)

    => B đúng.

    Vecto chỉ phương của (D) là: \overrightarrow d  = 2\left( {14, - 11,1} ight)

    Ta có: \frac{1}{{14}} e  - \frac{2}{{11}} e \frac{1}{1},nên (R) không vuông góc với (D).

  • Câu 23: Thông hiểu

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 24: Thông hiểu

    Cho các số phức z_1 , z_2. Khẳng định nào trong các khẳng định sau là khẳng định đúng?

    \left( I ight):\left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}.

    \left( {II} ight):\left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|.

    \left( {III} ight):{\left| {{z_1}} ight|^2} = {z_1}^2.

    Áp dụng tính chất số phức, ta có: 

    - Môđun của 1 thương hai số phức thì bằng thương của từng môđun \left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}

    -  Môđun của 1 tích hai số phức thì bằng tích của từng môđun  \left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|

    Vậy khẳng địn (I) và (II) là đúng.

  • Câu 25: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y - 7}{1} = \frac{z
- 3}{4}d_{2} là giao tuyến của hai mặt phẳng 2x + 3y - 9 = 0,y +
2z + 5 = 0. Vị trí tương đối của hai đường thẳng là:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + 3y - 9 = 0 \\
y + 2z + 5 = 0 \\
\end{matrix} ight.

    Cho y = 1 \Rightarrow \left\{
\begin{matrix}
x = 3 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A(3;1; - 3) \in d_{2\ }

    Cho y = 3 \Rightarrow \left\{
\begin{matrix}
x = 0 \\
z = - 4 \\
\end{matrix} ight.\  \Rightarrow B(0;3; - 4) \in d_{2}

    Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(2;1;4)

    Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 3;2; - 1) =
\overrightarrow{AB};\overrightarrow{AM} = (2; - 6; - 6)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 9; -
10;7)

    \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack\overrightarrow{AM} = - 2.9 + 6.10 - 6.7 = 0

    Do đó vị trí tương đối của hai đường thẳng là cắt nhau.

  • Câu 26: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(3;4;5) và mặt phẳng (P):x - y + 2z - 3 = 0. Gọi H là hình chiếu vuông góc của M lên (P). Tìm tọa độ điểm H?

    Vì H là hình chiếu vuông góc của M lên (P) nên H(3 + t;4 - t;5 + 2t)

    Điểm H thuộc mặt phẳng (P) nên ta có phương trình:

    (3 + t) - (4 - t) + 2(5 + 2t) - 3 =
0

    \Leftrightarrow t = - 1 \Leftrightarrow
H = (2;5;3)

  • Câu 27: Nhận biết

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

     Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

    I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx}  = \left. {\left( { - \cos x - \sin x} ight)} ight|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} =  - 2

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 28: Thông hiểu

    Trong không gian Oxyz cho điểm H(1;2; - 3). Viết phương trình mặt phẳng (\alpha) đi qua H và cắt các trục tọa độ Ox,Oy,Oz tại A,B,C sao cho H là trực tâm của tam giác ABC?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c),abc
eq 0.

    Khi đó: (\alpha):\frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1

    Ta có: \frac{x}{1} + \frac{y}{2} +
\frac{z}{- 3} = 1

    Ta có: \left\{ \begin{matrix}
\overrightarrow{HA} = (a - 1; - 2;3) \\
\overrightarrow{HB} = ( - 1;b - 2;3) \\
\overrightarrow{BC} = (0; - b;c) \\
\overrightarrow{AC} = ( - a;0;c) \\
\end{matrix} ight. vì H là trực tâm của tam giác ABC suy ra \left\{ \begin{matrix}
\overrightarrow{HA}.\overrightarrow{BC} = 0 \\
\overrightarrow{HB}.\overrightarrow{AC} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2b + 3c = 0 \\
a + 3c = 0 \\
\end{matrix} ight.\  \Leftrightarrow a = 2b = - 3c

    Mặt khác H \in (\alpha) \Rightarrow
\frac{1}{a} + \frac{2}{b} - \frac{3}{c} = 1 \Rightarrow \frac{1}{- 3c} +
\frac{4}{- 3c} - \frac{3}{c} = 1

    \Leftrightarrow 14 = - 3c
\Leftrightarrow c = \frac{- 14}{3} \Rightarrow \left\{ \begin{matrix}
a = 14 \\
b = 7 \\
\end{matrix} ight.

    Vậy (\alpha):\frac{x}{14} + \frac{y}{7} +\dfrac{z}{- \dfrac{14}{3}} = 1 hay (\alpha):x + 2y - 3z - 14 = 0.

  • Câu 29: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 30: Thông hiểu

    Một chất điểm đang chuyển động với vận tốc v_{0} = 18(m/s) thì tăng tốc với gia tốc a(t) = t^{2} + 5t\left( m/s^{2}
ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( t^{2} + 5t ight)dt} = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + C

    Do khi bắt đầu tăng tốc v_{0} =
18 nên v_{(t = 0)} = 18 \Rightarrow
C = 18

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + 18

    Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{3}{v(t)dt} =
\int_{0}^{3}{\left( \frac{t^{3}}{3} + \frac{5t^{2}}{2} + 18 ight)dt} =
\frac{333}{4}(m)

  • Câu 31: Thông hiểu

    Cho hàm số f(x) = x^{4} - 4x^{3} + 2x^{2}
- x + 1;\forall x\mathbb{\in R}. Tính I =
\int_{0}^{1}{f^{2}(x).f'(x)dx}

    Ta có:

    I = \int_{0}^{1}{f^{2}(x).f'(x)dx} =
\int_{0}^{1}{f^{2}(x)d\left( f(x) ight)} = \left. \ \frac{f^{3}(x)}{3}
ight|_{0}^{1} = - \frac{2}{3}.

  • Câu 32: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho các điểm M(3; - 2;1),N(1;0; - 3). Gọi M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy). Khi đó độ dài đoạn thẳng M'N' bằng:

    M';N' lần lượt là hình chiếu của M;N lên mặt phẳng (Oxy) nên M'(3; - 2;0),N'(1;0;0) suy ra \overrightarrow{M'N'} = ( -
2;2;0)

    \Rightarrow M'N' =
2\sqrt{2}.

  • Câu 33: Thông hiểu

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) .

    Viết phương trình tổng quát của mặt phẳng (P) vuông góc với mặt phẳng (ABC) song song đường cao AH của tam giác ABC.

     Theo đề bài, ta có: \left( P ight) \bot \left( {ABC} ight) song song đường cao AH \Rightarrow \left( P ight) \bot \overrightarrow {BC}  = \left( { - 3,3,3} ight)

    \Rightarrow \left( P ight):\left( {x - 1} ight)\left( { - 3} ight) + \left( {y + 2} ight)3 + \left( {z - 6} ight)3 = 0

    \Leftrightarrow x - y - z + 3 = 0

  • Câu 34: Vận dụng cao

    Biết rằng {I_1} = \int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{1 + \cos 2x}}dx}  = aI = \int\limits_{ - 1}^0 {\sqrt[3]{{x + 2}}} dx = b\sqrt[3]{2} - \frac{3}{4}, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:

     Ta có:

    {I_1} = \int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{1 + \cos 2x}}dx}  = \frac{1}{2}\int\limits_{ - \frac{\pi }{4}}^0 {\frac{1}{{{{\cos }^2}x}}dx}  = ... = \frac{1}{2}\int\limits_{ - 1}^0 {tdt}  = \frac{1}{2}, với t = \tan x

    I = \int\limits_{ - 1}^0 {\sqrt[3]{{x + 2}}} dx = \frac{3}{4}\left. {\left[ {\sqrt[3]{{{{\left( {x + 2} ight)}^4}}}} ight]} ight|_{ - 1}^0 = \frac{3}{2}\sqrt[3]{2} - \frac{3}{4}

    \Rightarrow a = \frac{1}{2},b = \frac{3}{2} \Rightarrow \frac{a}{b} = \frac{1}{3}

  • Câu 35: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 36: Vận dụng cao

    Cho hàm số f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của 3e^2F(x)?

     Ta có:

    F\left( x ight) = \int {\left( {{x^2} - 1} ight){e^{{x^3} - 3x}}dx = \frac{1}{3}\int {{e^{{x^3} - 3x}}d\left( {{x^3} - 3x} ight) = \frac{1}{3}{e^{{x^3} - 3x}} + C} }

    F'\left( x ight) = f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} = 0 \Rightarrow x =  \pm 1

    \begin{matrix}  F''\left( x ight) = 2x.{e^{{x^3} - 3x}} + \left( {{x^2} - 1} ight)\left( {3{x^2} - 3} ight){e^{{x^3} - 3x}} \hfill \\  F''\left( 1 ight) > 0;F''\left( { - 1} ight) < 0 \hfill \\ \end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)

    => F\left( 1 ight) = 0 \Rightarrow \frac{1}{3}{e^{ - 2}} + C = 0 \Rightarrow C =  - \frac{1}{{3{e^2}}}

    => F\left( x ight) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}} Hay  3e^2F(x) = e^{{x^3} - 3x + 2} - 1

  • Câu 37: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm M(500;200;8)đến điểm N(800;300;10) trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là \left( a;b;\frac{c}{d}
ight), trong đó a,b,c,d \in
\mathbb{N}^{*},\ \ \frac{c}{d} là phân số tối giản. Khi đó, hãy tính a + b + c + d?

    Đáp án: 1223

    Gọi Q(x;y;z) là tọa độ của máy bay sau 5 phút tiếp theo.

    \overrightarrow{MN} =
(300;100;2)

    \overrightarrow{NQ} = (x - 800;y - 300;z
- 10)

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M ightarrow N gấp 4 lần thời gian bay từ N ightarrow Q nên MN = 4NQ

    Mặt khác, máy bay giữ nguyên hướng bay nên \overrightarrow{MN}\overrightarrow{NQ} cùng hướng.

    Suy ra \overrightarrow{MN} =
4\overrightarrow{NQ} \Leftrightarrow \left\{ \begin{matrix}
300 = 4(x - 800) \\
100 = 4(y - 300) \\
2 = 4(z - 10) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 875 \\
y = 325 \\
z = 10,5 \\
\end{matrix} ight.\  \Rightarrow Q\left( 875;325;\frac{21}{2}
ight)

    Tọa độ của máy bay sau 5 phút tiếp theo là \left( 875;325;\frac{21}{2} ight) \Rightarrow a
= 875,\ \ b = 325,\ \ c = 21,\ \ d = 2.

    Do đó, a + b + c + d = 1223.

  • Câu 38: Nhận biết

    Tích phân \int_{1}^{8}\sqrt[3]{x}dx bằng:

    Ta có:

    \int_{1}^{8}\sqrt[3]{x}dx = \left. \
\left( \frac{3}{4}x\sqrt[3]{x} ight) ight|_{1}^{8} =
\frac{45}{4}.

  • Câu 39: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 40: Vận dụng

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 41: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 42: Nhận biết

    Giả sử f(x);g(x) là các hàm số bất kì liên tục trên \mathbb{R}a;b;c là các số thực. Mệnh đề nào sau đây sai?

    Theo tính chất tích phân ta có:

    \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} + \int_{c}^{a}{f(x)dx}

    = \int_{a}^{b}{f(x)dx} +
\int_{b}^{c}{f(x)dx} - \int_{a}^{c}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{a}^{c}{f(x)dx} = 0

    \int_{a}^{b}{c.f(x)dx} =
c.\int_{a}^{b}{f(x)dx};\forall x\mathbb{\in R}

    \int_{a}^{b}{\left\lbrack f(x) - g(x)
ightbrack dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx} -
\int_{a}^{b}{g(x)dx} + \int_{a}^{b}{g(x)dx}

    = \int_{a}^{b}{f(x)dx}

    Vậy mệnh đề sai: \int_{a}^{b}{\left\lbrack f(x)g(x) ightbrack
dx} = \int_{a}^{b}{f(x)dx}.\int_{a}^{b}{g(x)dx}

  • Câu 43: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 44: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 45: Thông hiểu

    Cho hai hàm số F(x) = \left( x^{2} + bx +
c ight)e^{x}f(x) = \left(
x^{2} + 3x + 4 ight)e^{x}. Biết a;b là các số thực để F(x) là một nguyên hàm của f(x). Tính S
= a + b?

    Từ giả thiết ta có:

    F'(x) = f(x)

    \Leftrightarrow (2x + a)e^{x} + \left(
x^{2} + ax + b ight)e^{x} = \left( x^{2} + 3x + 4 ight)e^{x};\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} + (2 + a)x + a + b
= x^{2} + 3x + 4;\forall x\mathbb{\in R}

    Đồng nhất hai vế ta có: \left\{
\begin{matrix}
a + 2 = 3 \\
a + b = 4 \\
\end{matrix} ight.\  \Rightarrow S = a + b = 4.

  • Câu 46: Nhận biết

    Cho số phức z  thỏa mãn z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}}. Viết z dưới dạng z = a + bi, \, \, a,b \in \mathbb{R}. Khi đó tổng a+b có giá trị bằng bao nhiêu?

     z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}} = {\left( { - i} ight)^{2024}} = {\left( {{i^4}} ight)^{506}} = 1

  • Câu 47: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 48: Vận dụng

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 49: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 50: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 204 lượt xem
Sắp xếp theo