Cho hàm số với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Cho hàm số với
là tham số. Gọi
tập hợp tất cả các giá trị nguyên của tham số
thỏa mãn
. Số phần tử của tập hợp
bằng:
Ta có:
Đạo hàm
và
Suy ra
Mà
Vậy có tất cả 11 giá trị nguyên của tham số m.
Hàm số nào dưới dây nghịch biến trên ?
Xét hàm số có
suy ra hàm số
đồng biến trên
.
Số đường tiệm cận của đồ thị hàm số là:
Tập xác định
Ta có: suy ra tiệm cận ngang của đồ thị hàm số
là
.
Lại có suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra
là tiệm cận đứng của đồ thị hàm số.
Vậy có tất cả 3 đường tiệm cận.
Gia đình bác T muốn xây một bình chứa hình trụ có thể tích . Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Gọi là bán kính đáy của bình chứa hình trụ
Khi đó tổng số tiền phải trả là
Đặt
Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng .
Cho hàm số có đồ thị
và đường thẳng
. Có bao nhiêu giá trị nguyên dương của tham số
để đồ thị
cắt đường thẳng
tại ba điểm phân biệt?
Phương trình hoành độ giao điểm
Đặt
Để đồ thị (C) cắt đường thẳng d tại ba điểm phân biệt thì phương trình phải có 3 nghiệm phân biệt, khi đó
phải có hai nghiệm phân biệt khác
.
Do đó
Do nguyên dương nên
.
Vậy số giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán bằng 3.
Cho hàm số . Hãy chọn khẳng định đúng?
Tập xác định
Ta có: nên hàm số đồng biến trên các khoảng
và
.
Cho hàm số với
là tham số thực lớn hơn
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó nghịch biến trên
.
Từ đó suy ra
Vậy đáp án đúng là .
Cho hàm số có đạo hàm
. Số điểm cực đại của hàm số là:
Ta có:
Lập bảng biến thiên của hàm số
Suy ra số điểm cực đại của hàm số là 1 điểm.
Tìm điều kiện của tham số để đồ thị hàm số
chỉ có một điểm cực đại mà không có điểm cực tiểu?
Xét khi đó
là hàm số bậc hai có a = -1 < 0 nên đồ thị của hàm số là parabol có bề lõm hướng xuống nên có 1 cực đại mà không có cực tiểu. Suy ra
thỏa mãn.
Xét khi đó
là hàm số bậc 4 dạng trùng phươn
Để đồ thị hàm số có một cực đại mà không có cực tiểu thì
Vậy đáp án cần tìm là .
Trong các hàm số sau, đồ thị hàm số nào có đường tiệm cận ngang?
Ta có: nên tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình
.
Cho hàm số . Giả sử
lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Khi đó giá trị của biểu thức
là:
Ta có:
Vậy
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số nghịch biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Ta có:
Theo yêu cầu bài toán
Mà
Vậy tập hợp T có tất cả 3 phần tử.
Cho hàm số bậc ba có đồ thị như hình vẽ sau:
Khi đó số điểm cực trị của hàm số là:
Từ giả thiết ta có đồ thị của hàm số như sau:
Vậy hàm số có ba điểm cực trị.
Cho hàm trùng phương có đồ thị như hình vẽ dưới đây:
Tìm các giá trị của tham số m để phương trình có 4 nghiệm phân biệt?
Hình vẽ minh họa
Để phương trình có 4 nghiệm phân biệt thì
.
Cho hàm số có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:
Xét hàm . Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Có bao nhiêu giá trị nguyên dương của tham số để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho hàm số . Giá trị lớn nhất của hàm số trên đoạn
bằng bao nhiêu?
Ta có: Hàm số đã cho xác định và liên túc trên đoạn
Suy ra hàm số đồng biến trên
Vậy .
Hàm số nghịch biến trên khoảng
khi và chỉ khi:
Tập xác định
Ta có:
Hàm số nghịch biến trên khoảng
Vậy là giá trị cần tìm.
Cho hàm số xác định trên
và có bảng xét dấu đạo hàm
như sau:
Hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đạo hàm ta thấy hàm số có 1 điểm cực trị.
Có bao nhiêu giá trị thực của tham số để hàm số
có điểm cực đại
và điểm cực tiểu
thỏa mãn biểu thức
?
Ta có: có
nên
.
Hàm số có cực đại và cực tiểu khi và chỉ khi .
Trường hợp 1:
Do
Lại có
Với điều kiện thỏa mãn.
Trường hợp 2:
Do
Lại có
Với điều kiện thỏa mãn.
Vậy có 2 giá trị thực của tham số m thỏa mãn.