Biết rằng . Xác định
?
Ta có:
Do đó:
Khoahoc.vn xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12 chương 4: Nguyên hàm Tích phân sách Cánh Diều. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!
Biết rằng . Xác định
?
Ta có:
Do đó:
Hàm số là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Biết với
là các số nguyên dương. Giá trị của biểu thức
bằng:
Giả sử . Đặt
, đổi cận
Cho với
. Tính
?
Ta có:
Vậy
Tìm họ nguyên hàm của hàm số ?
Ta có:
Thể tích khối tròn xoay khi quay quanh trục Ox hình phẳng giới hạn bởi là
. Tính
?
Phương trình hoành độ giao điểm
Ta có:
Vậy
Cho hình phẳng giới hạn bởi đồ thị các hàm số sau
và đườDng thẳng
(tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng
bằng
Gắn hệ trục tọa độ mới.
Cho hai hàm số y = f(x), y = g(x) liên tục trên [a; b]. Khi đó thể tích vật thể tròn xoay giới hạn bởi hai đồ thị số y = f(x), y = g(x) và hai đường thẳng x = a, x = b khi quay quanh trục Ox là
Đặt . Ta được hệ trục tọa độ OXY như hình vẽ
Ta có:
Thể tích cần tìm là
Tính tích phân ?
Đặt . Ta có:
suy ra
.
Trong mặt phẳng tọa độ , cho hình thang
với
. Quay hình thang
xung quanh trục
thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??
Phương trình các cạnh của hình thang là:
Ta thấy là hình thang vuông có
nên khối tròn xoay cần tính là
Cho hàm số có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Cho hàm số liên tục trên
thỏa mãn
và
. Tính tích phân
?
Ta có: .
Ta có:
Đặt . Đổi cận
do đó:
Ta có:
Đặt . Đổi cận
do đó:
.
Vậy
Tính tích phân ?
Ta có:
Gọi là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Diện tích hình phẳng giới hạn bởi các đường , trục hoành;
và
bằng:
Hoành độ giao điểm của đồ thị hàm số và trục hoành là nghiệm của phương trình:
Diện tích hình phẳng giới hạn bởi các đường là:
Cho hàm số liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Thể tích của khối tròn xoay do hình phẳng giới hạn bởi các đường
, trục hoành và đường thẳng
khi quay quanh trục
?
Phương trình hoành độ giao điểm của đường và trục hoành là:
Khi đó, thể tích V của khối tròn xoay do hình phẳng giới hạn bởi các đường , trục hoành và đường thẳng x = 1 khi quay quanh trục Ox là:
Tìm nguyên hàm của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Một vận động viên đua xe đang chạy với vận tốc thì anh ta tăng tốc với vận tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc tăng tốc, hỏi quãng đường xe của anh ta đi được trong thời gian
kể từ lúc bắt đầu tăng tốc là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường xe đi được sau 10 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Cho hàm số liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà