Họ nguyên hàm của hàm số là:
Ta có:
Họ nguyên hàm của hàm số là:
Ta có:
Nguyên hàm của hàm số là:
Ta có:
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Tìm một nguyên hàm của hàm số ?
Ta có:
Đặt
Khi đó .
Họ nguyên hàm của hàm số là:
Ta có:
.
Biết rằng liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Biết rằng và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Cho hàm số , ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Họ nguyên hàm của hàm số là:
Ta có:
Khi đó:
Tìm họ nguyên hàm của hàm số
Tìm nguyên hàm của hàm số
Tích phân từng phần:
Đặt
Tìm nguyên hàm của hàm số ?
Đặt
Biết rằng liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Tìm nguyên hàm của hàm số ??
Đặt
Cho hàm số là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Tìm nguyên hàm của hàm số
, biết rằng
?
Ta có:
Vậy .
Cho hàm số thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Cho là một nguyên hàm của hàm số
thỏa mãn
. Tìm
?
Ta có:
Lại có
Vậy .
Cho hàm số xác định trên
thỏa mãn
và
. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.
Biết là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.