Luyện tập Tính đơn điệu của hàm số Cánh Diều

Khoahoc.vn xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Tính đơn điệu của hàm số sách Cánh Diều. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm hàm số nghịch biến trên R

    Hàm số nào dưới dây nghịch biến trên tập số thực?

    Hướng dẫn:

    Ta thấy hàm số y = - x^{2} - 3x có tập xác định \mathbb{R} và đạo hàm y = - 3x^{2} - 3 < 0;\forall
x\mathbb{\in R} nên nghịch biến trên \mathbb{R}.

  • Câu 2: Vận dụng
    Chọn khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có bảng biến thiên như hình vẽ:

    Hàm số g(x) = f\left( 2x^{2} -
\frac{5}{2}x - \frac{3}{2} ight) nghịch biến trong khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    g'(x) = \left( 4x - \frac{5}{2}
ight).f'\left( 2x^{2} - \frac{5}{2}x - \frac{3}{2}
ight)

    Xét g'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}4x - \dfrac{5}{2} = 0 \\f'\left( 2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} ight) = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5}{8} \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = - 2 \\2x^{2} - \dfrac{5}{2}x - \dfrac{3}{2} = 3 \\\end{matrix} ight.\  \Leftrightarrow x \in \left\{ -1;\dfrac{1}{4};\dfrac{5}{8};1;\dfrac{9}{4} ight\}

    Ta có bảng xét dấu:

    g'(0) = - \frac{5}{2}.f'\left( -
\frac{3}{2} ight) > 0 \Rightarrow g'(x) > 0;\forall x \in
\left( - 1;\frac{1}{4} ight)

    Vậy đáp án cần tìm là \left(
1;\frac{5}{4} ight).

  • Câu 3: Thông hiểu
    Tìm tập nghiệm của bất phương trình

    Cho hàm số y = f(x) luôn nghịch biến trên \mathbb{R}. Tập nghiệm của bất phương trình f\left( \frac{1}{x}
ight) > f(1) là:

    Hướng dẫn:

    Vì hàm số y = f(x) luôn nghịch biến trên \mathbb{R} nên ta có:

    f\left( \frac{1}{x} ight) > f(1)
\Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x < 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x > 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x \in ( - \infty;0) \cup (1; +
\infty)

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty;0) \cup (1; + \infty)

  • Câu 4: Nhận biết
    Xác định khoảng đồng biến của hàm số

    Cho hàm số y =
f(x) có đồ thị như hình vẽ:

    Hàm số y = f(x) đồng biến trên khoảng nào sau đây?

    Hướng dẫn:

    Từ đồ thị của hàm số y = f(x) ta xác định được hàm số đồng biến trên các khoảng ( - 2; - 1).

  • Câu 5: Thông hiểu
    Xác định điều kiện của tham số m

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
2)x^{2} + \left( m^{2} + 4m + 3 ight)x + 6m + 9 với m là tham số. Tìm giá trị của tham số m để đồ thị hàm số (C) có cực đại tại x_{1} và cực tiểu tại x_{2} sao cho {x_{1}}^{2} - 2x_{2} = 0?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2(m + 2)x + m^{2}
+ 4m + 3

    Hàm số có cực đại tại x_{1} và cực tiểu tại x_{2} khi và chỉ khi

    \Delta' > 0 \Leftrightarrow (m +
2)^{2} - \left( m^{2} + 4m + 3 ight) > 0 \Leftrightarrow 1 >
0\forall m\mathbb{\in R}

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = m + 3 \\
x = m + 1 \\
\end{matrix} ight.

    Theo bài ra ta có:

    {x_{1}}^{2} - 2x_{2} = 0 \Leftrightarrow
(m + 1)^{2} - 2(m + 3) = 0

    \Leftrightarrow m^{2} - 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - \sqrt{5} \\
m = \sqrt{5} \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = \sqrt{5} \\
m = - \sqrt{5} \\
\end{matrix} ight..

  • Câu 6: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} và có đồ thị của hàm số f'(x) là đường cong như hình vẽ sau:

    Chọn khẳng định đúng?

    Hướng dẫn:

    Từ đồ thị hàm số f'(x) ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra khẳng định đúng là: “Hàm số y = f(x) nghịch biến trên khoảng (0; + \infty)”.

  • Câu 7: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - mx^{2} + (2m - 1)x - m + 2 nghịch biến trên khoảng ( - 3;0)?

    Hướng dẫn:

    Ta có: y' = x^{2} - 2mx + 2m -
1

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 2m - 1 \\
\end{matrix} ight.

    Hàm số đã cho nghịch biến trên khoảng ( -
3;0) khi ( - 3;0) nằm trong khoảng hai nghiệm

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 \leq - 3 < 0 \leq 2m - 1 \\
2m - 1 \leq - 3 < 0 \leq 1 \\
\end{matrix} ight.\  \Leftrightarrow 2m - 1 \leq - 3 \Leftrightarrow m
\leq - 1

    Vậy đáp án cần tìm là m \leq -
1.

  • Câu 8: Thông hiểu
    Chọn đáp án đúng

    Có bao nhiêu giá trị tham số m để hàm số y = x^{3} + \frac{1}{2}\left(
m^{2} - 1 ight)x^{2} + 1 - m có điểm cực đại là x = - 1?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} + \left( m^{2} - 1 ight)x \\
y'' = 6x + m^{2} - 1 \\
\end{matrix} ight.. Để hàm số đạt cực đại tại x = - 1 thì

    y'( - 1) = 0 \Leftrightarrow 3 +
\left( m^{2} - 1 ight).( - 1) = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
m = 2 \\
m = - 2 \\
\end{matrix} ight.

    Lúc này y''( - 1) = - 6 + 4 - 1
< 0 nên hàm số đạt cực đại tại x
= - 1

    Vậy có hai giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 9: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

  • Câu 10: Thông hiểu
    Chọn kết luận đúng

    Cho hàm số y = 2x^{3} - 5x^{2} + 4x -
2021. Gọi x_{1};x_{2} lần lượt là hoành độ tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{= R}

    Ta có: y' = 6x^{2} - 10x + 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{2}{3} \\\end{matrix} ight.

    y'' = 12x - 10

    \Rightarrow y''(1) = 1 >
0 nên x_{2} = 1 là điểm cực tiểu của hàm số.

    y''\left( \frac{2}{3} ight) = -
2 < 0 nên x_{1} =
\frac{2}{3} là điểm cực đại của hàm số.

    Vậy kết luận đúng là: 2x_{1} - x_{2} =
\frac{1}{3}.

  • Câu 11: Thông hiểu
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Tìm tất cả các giá trị của m...

    Hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng nào?

    Hướng dẫn:

    Ta có: y' = - 2f'(3 -
2x)

    y' < 0 \Leftrightarrow -
2f'(3 - 2x) < 0 \Leftrightarrow f'(3 - 2x) >
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
- 1 < 3 - 2x < 1 \\
3 - 2x > 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 < x < 2 \\
x < - \frac{1}{2} \\
\end{matrix} ight.

    Vậy hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng (1;2).

  • Câu 12: Nhận biết
    Tìm điều kiện của tham số m

    Tất cả các giá trị của tham số m để hàm số y = x^{3} - 3x^{2} + mx +
5 có hai điểm cực trị?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 6x +
m

    Để hàm số có hai điểm cực trị thì y'
= 0 có hai nghiệm phân biệt khi đó

    \Delta'_{y'} = 9 - 3m > 0
\Leftrightarrow m < 3

  • Câu 13: Thông hiểu
    Tính giá trị biểu thức

    Cho đồ thị của hàm số y = ax^{4} + bx^{2}
+ c;(a eq 0) có điểm cực đại A(0;
- 3) và điểm cực tiểu B( - 1; -
5). Tính giá trị biểu thức T = a +
2b + 3c?

    Hướng dẫn:

    Đồ thị hàm số đi qua điểm A(0; -
3)B( - 1; - 5) nên \left\{ \begin{matrix}
c = - 3 \\
a + b + c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = - 3 \\
a + b = - 2 \\
\end{matrix} ight.\ (*)

    y = ax^{4} + bx^{2} + c \Rightarrow
y' = 4ax^{3} + 2bx

    Đồ thị hàm số có điểm cực tiểu B( - 1; -
5) nên - 4a - 2b =
0(**)

    Từ (*) và (**) ta có hệ phương trình \left\{ \begin{matrix}
a + b = - 2 \\
- 4a - 2b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
\end{matrix} ight.

    Với \left\{ \begin{matrix}
a = 2 \\
b = - 4 \\
c = - 3 \\
\end{matrix} ight.\  \Rightarrow y = 2x^{4} - 4x^{2} - 3 \Rightarrow
\left\{ \begin{matrix}
y' = 8x^{3} - 8x \\
y'' = 24x^{2} - 8 \\
\end{matrix} ight.

    y''(0) = - 8 < 0 suy ra A(0; - 3) là điểm cực đại.

    y''( - 1) = 16 > 0 suy ra B( - 1; - 5) là điểm cực tiểu

    Vậy T = a + 2b + 3c = - 15

  • Câu 14: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số bậc năm y = f(x) và đồ thị hàm số y = f'(x) trên \mathbb{R} biểu diễn bởi hình vẽ:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ đồ thị hàm số y = f'(x) ta có bảng biến thiên của hàm số y =
f(x)

    Từ bảng biến thiên ta thấy hàm số y =
f(x) có 1 cực đại và 1 cực tiểu.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = f(x) là hàm đa thức có đạo hàm f'(x) = (x - 1)(x -
2)^{2}(x + 1)^{3}. Số điểm cực trị của hàm số là:

    Hướng dẫn:

    Ta có:

    f'(x) = (x - 1)(x - 2)^{2}(x +
1)^{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = - 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 16: Vận dụng
    Tính giá trị biểu thức

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 17: Vận dụng cao
    Tính xác suất thỏa mãn yêu cầu đề bài

    Cho tập hợp A = \left\{ n\mathbb{\in Z}|0
\leq n \leq 20 ight\}F là tập hợp các hàm số f(x) = x^{3} + \left( 2m^{2} - 5 ight)x^{2} + 6x
- 8m^{2}m \in A. Chọn ngẫu nhiên một hàm số f(x) \in F. Tính xác suất để đồ thị hàm số y =
f(x) có hai điểm cực trị nằm khác phía đối với trục Ox?

    Hướng dẫn:

    Không gian mẫu |\Omega| = 21

    Ta có: f(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2 \\
x^{2} + \left( 2m^{2} - 3 ight)x + 4m^{2} = 0(*) \\
\end{matrix} ight.

    Đồ thị của hàm số y = f(x) có hai điểm cực trị nằm khác phía đối với trục Ox suy ra phương trình (*) có hai nghiệm phân biệt khác 2.

    \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  {\left( {2{m^2} - 3} ight)^2} - 16{m^2} > 0 \hfill \\
  {2^2} + \left( {2{m^2} - 3} ight).2 + 4{m^2} e 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m \in A \hfill \\
  \left[ \begin{gathered}
  m > \sqrt {\dfrac{{7 + 2\sqrt {10} }}{2}}  \approx 2,58 \hfill \\
  0 \leqslant m < \sqrt {\dfrac{{7 - 2\sqrt {10} }}{2}}  \approx 0,58 \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight.

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;3;4;...;20 ight\}

    Vậy xác suất cần tìm là P =
\frac{19}{21}.

  • Câu 18: Nhận biết
    Chọn mệnh đề sai

    Cho hàm số y = ax^{3} + bx^{2} + cx +
d;\left( a;b;c;d\mathbb{\in R} ight) có đồ thị hàm số như hình vẽ:

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Giá trị cực đại của hàm số là 4 suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là - 1.”

  • Câu 19: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số f(x) xác định trên tập số thực và có bảng xét dấu của đạo hàm như sau:

    Hàm số có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có:

    Hàm số xác định trên \mathbb{R} và bảng xét dấu đã cho ta suy ra bảng biến thiên:

    Từ đó suy ra hàm số có bốn điểm cực trị.

  • Câu 20: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số có đạo hàm f'(x) = (x + 2)^{3}(x - 2)^{3}(3 -
x). Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = - 2 \\
x = 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu như sau:

    Vậy hàm số đồng biến trên khoảng (2;3).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 17 lượt xem
Sắp xếp theo