Luyện tập Vectơ và các phép toán vectơ trong không gian Cánh Diều

Khoahoc.vn xin gửi tới bạn đọc bài viết Trắc nghiệm Toán 12: Vectơ và các phép toán vectơ trong không gian sách Cánh Diều. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Xác định góc giữa hai vectơ

    Cho tứ diện ABCDAB = AC = AD\widehat{BAC} = \widehat{BAD} = 60^{0}. Hãy xác định góc giữa cặp vectơ \overrightarrow{AB}\overrightarrow{CD}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos60^{0} - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.\cos60^{0}

    AC = AD \Rightarrow
\overrightarrow{AB}.\overrightarrow{CD} = 0 \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{CD} ight) = 90^{0}

  • Câu 2: Vận dụng cao
    Tính giá trị nhỏ nhất của biểu thức T

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. M là một điểm bất kì thuộc miền trong tam giác ABC. Tìm giá trị nhỏ nhất của biểu thức T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}?

    Hướng dẫn:

    Đặt \overrightarrow{OA} =
\overrightarrow{a};\overrightarrow{OB} =
\overrightarrow{b};\overrightarrow{OC} = \overrightarrow{c}. Khi đó \overrightarrow{OM} =
x\overrightarrow{a} + y\overrightarrow{b} + z\overrightarrow{c} với x;y;z là ba số có tổng bằng 1.

    Ta có:

    \overrightarrow{AM} =
\overrightarrow{OM} - \overrightarrow{OA} = (x - 1)\overrightarrow{a} +
y\overrightarrow{b} + z\overrightarrow{c}

    \Rightarrow {\overrightarrow{AM}}^{2} =
(x - 1)^{2}{\overrightarrow{a}}^{2} + y^{2}{\overrightarrow{b}}^{2} +
z^{2}{\overrightarrow{c}}^{2}

    \Rightarrow \frac{MA^{2}}{OA^{2}} = (x -
1)^{2} + y^{2}.\frac{b^{2}}{a^{2}} +
z^{2}.\frac{c^{2}}{a^{2}}

    Tương tự ta được

    \Rightarrow \left\{ \begin{matrix}\dfrac{MB^{2}}{OB^{2}} = (y - 1)^{2} + z^{2}.\dfrac{c^{2}}{b^{2}} +x^{2}.\dfrac{a^{2}}{b^{2}} \\\dfrac{MC^{2}}{OC^{2}} = (z - 1)^{2} + x^{2}.\dfrac{a^{2}}{c^{2}} +y^{2}.\dfrac{b^{2}}{c^{2}} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}}

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    \Rightarrow T = x^{2}a^{2}\left(
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight) + y^{2}b^{2}\left(
\frac{1}{c^{2}} + \frac{1}{a^{2}} ight) + z^{2}c^{2}\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} ight)

    + (x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight)

    - \left( x^{2} + y^{2} + z^{2} ight) +
(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2}

    \Rightarrow T = \left( \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} ight)\left( x^{2}a^{2} + y^{2}b^{2}
+ z^{2}c^{2} ight) - 2(x + y + z) + 3

    Ta biết rằng H là chân đường cao kẻ từ đỉnh O của tứ diện vuông OABC khi và chỉ khi H là trực tâm của tam giác ABC. Hơn nữa \left\{ \begin{matrix}\dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} + \dfrac{1}{c^{2}} = \dfrac{1}{OH^{2}}\\x^{2}a^{2} + y^{2}b^{2} + z^{2}c^{2} = OM^{2} \\\end{matrix} ight.

    Do đó T = \frac{MA^{2}}{OA^{2}} +
\frac{MB^{2}}{OB^{2}} + \frac{MC^{2}}{OC^{2}} = \frac{OM^{2}}{OH^{2}} +
1 \geq 1 + 1 = 2

    Dấu "=" xảy ra khi và chỉ khi OM = OH hay M trùng H.

    Vậy min T = 2, đạt được khi M trùng H hay M là trực tâm của tam giác ABC.

  • Câu 3: Nhận biết
    Chọn mệnh đề đúng

    Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{BC} = \overrightarrow{d}. Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 4: Nhận biết
    Chọn khẳng định sai

    Trong không gian cho tứ diện đều ABCD. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Tứ diện ABCD đều nên \overrightarrow{AD} không thể vuông góc với \overrightarrow{DC}.

    Vậy khẳng định sai là: “\overrightarrow{AD}\bot\overrightarrow{DC}”.

  • Câu 5: Nhận biết
    Xác định số vectơ thỏa mãn yêu cầu

    Cho bốn điểm A;B;C;D trong không gian. Hỏi có bao nhiêu vectơ khác \overrightarrow{0} có điểm đầu và điểm cuối là 4 điểm?

    Hướng dẫn:

    Lấy A làm gốc ta được 3 vectơ \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{AD}. Tương tự đối với B;C;D ta được 4.3 = 12 vectơ.

  • Câu 6: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi M;P lần lượt là trung điểm của AB;CD. Đặt \overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{AD} = \overrightarrow{d}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{MP} =
\frac{1}{2}\overrightarrow{MC} + \frac{1}{2}\overrightarrow{MD} =
\overrightarrow{MA} + \frac{1}{2}\overrightarrow{AC} +
\frac{1}{2}\overrightarrow{AD}

    = - \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AD} =
\frac{1}{2}\left( \overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b} ight)

    Vậy khẳng định đúng \overrightarrow{MP} =
\frac{1}{2}\left( \overrightarrow{c} + \overrightarrow{d} -
\overrightarrow{b} ight).

  • Câu 7: Vận dụng
    Chọn đáp án đúng

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi điểm I \in CC' sao cho \overrightarrow{C'I} =
\frac{1}{3}\overrightarrow{C'C}, G là trọng tâm tứ diện BAB'C'. Biểu diễn vectơ \overrightarrow{IG} qua các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}. Đáp án nào dưới đây đúng?

    Hướng dẫn:

    Ta có G là trọng tâm của tứ diện BA'B'C' nên

    4\overrightarrow{IG} =
\overrightarrow{IB} + \overrightarrow{IA'} +
\overrightarrow{IB'} + \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\left( \overrightarrow{IC} + \overrightarrow{CB} ight) + \left(
\overrightarrow{IC'} + \overrightarrow{C'A'} ight) +
\left( \overrightarrow{IC'} + \overrightarrow{C'B'} ight)
+ \overrightarrow{IC'}

    \Leftrightarrow 4\overrightarrow{IG} =
\overrightarrow{IC'} + \left( 2\overrightarrow{IC'} +
\overrightarrow{IC} ight) + \left( \overrightarrow{CB} +
\overrightarrow{C'B'} ight) +
\overrightarrow{C'A'}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{CC'} + \overrightarrow{0} +
2\overrightarrow{CB} - \overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{AA'} + 2\overrightarrow{CB} -
\overrightarrow{AC}

    \Leftrightarrow 4\overrightarrow{IG} =
\frac{1}{3}\overrightarrow{a} + 2\left( \overrightarrow{b} -
\overrightarrow{c} ight) - \overrightarrow{c}

    \Leftrightarrow \overrightarrow{IG} =
\frac{1}{4}\left( \frac{1}{3}\overrightarrow{a} + \overrightarrow{b} -
2\overrightarrow{c} ight)

  • Câu 8: Nhận biết
    Chọn khẳng định đúng

    Trong không gian cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AD} =
\overrightarrow{A_{1}D_{1}} = \overrightarrow{A_{1}C} +
\overrightarrow{CD_{1}} suy ra \overrightarrow{CD_{1}};\overrightarrow{AD};\overrightarrow{A_{1}C} đồng phẳng.

  • Câu 9: Thông hiểu
    Phân tích vectơ

    Cho hình hộp ABCD.EFFH. Phân tích nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Biến đổi biểu thức

    \overrightarrow{AE} = \frac{1}{2}\left(
\overrightarrow{AF} + \overrightarrow{AH} - \overrightarrow{AC}
ight)

    \Leftrightarrow 2\overrightarrow{AE} =
\overrightarrow{AF} + \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{AE} +
\left( \overrightarrow{AE} - \overrightarrow{AF} ight) =
\overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BA} +
\overrightarrow{AE} = \overrightarrow{CH}

    \Leftrightarrow \overrightarrow{BE} =
\overrightarrow{CH} (đúng)

    Vậy phân tích đúng là \overrightarrow{AE}
= \frac{1}{2}\left( \overrightarrow{AF} + \overrightarrow{AH} -
\overrightarrow{AC} ight).

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh bằng a và các cạnh bên đều bằng a. Gọi M;N lần lượt là trung điểm của ADSD. Số đo của góc (MN;SC) bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Do ABCD là hình vuông cạnh a suy ra AC =
a\sqrt{2}

    \Rightarrow AC^{2} = 2a^{2} = SA^{2} +
SC^{2} suy ra tam giác SAC vuông tại S.

    Từ giả thiết ta có MN là đường trung bình của tam giác DSA \Rightarrow \overrightarrow{NM} =
\frac{1}{2}\overrightarrow{SA}

    Khi đó \overrightarrow{MN}.\overrightarrow{SC} =
\frac{1}{2}\overrightarrow{SA}.\overrightarrow{SC} = 0 suy ra MN\bot SC \Rightarrow (MN;SC) =
90^{0}

  • Câu 11: Thông hiểu
    Tìm đẳng thức chưa chính xác

    Cho hình hộp ABCD.A'B'C'D và tâm O. Hãy chỉ ra đẳng thức sai trong các đẳng thức sau?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành suy ra \overrightarrow{AC'} = \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} đúng.

    Do \overrightarrow{AB};\overrightarrow{CD} đối nhau và \overrightarrow{BC'};\overrightarrow{D'A} đối nhau nên \overrightarrow{AB} +
\overrightarrow{BC'} + \overrightarrow{CD} +
\overrightarrow{D'A} = \overrightarrow{0} đúng.

    Do \overrightarrow{AB} +
\overrightarrow{AA'} = \overrightarrow{AB'};\overrightarrow{AD}
+ \overrightarrow{DD'} = \overrightarrow{AD'} suy ra \overrightarrow{AB} =
\overrightarrow{AD} nên \overrightarrow{AB} + \overrightarrow{AA'} =
\overrightarrow{AD} + \overrightarrow{DD'} sai.

    Do \overrightarrow{AB} +
\overrightarrow{BC} + \overrightarrow{CC'} =
\overrightarrow{AC'}\overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} =
\overrightarrow{AC'} nên \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CC'} = \overrightarrow{AD'} +
\overrightarrow{D'O} + \overrightarrow{OC'} đúng.

  • Câu 12: Vận dụng
    Xác định vị trí điểm M

    Trong không gian cho tam giác ABC. Tìm M sao cho giá trị của biểu thức P = MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất?

    Hướng dẫn:

    Gọi G là trọng tâm tam giác ABC

    Suy ra G cố định và \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} =
\overrightarrow{0}

    P = MA^{2} + MB^{2} +
MC^{2}

    P = \left( \overrightarrow{MG} +
\overrightarrow{GA} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GB} ight)^{2} + \left( \overrightarrow{MG} +
\overrightarrow{GC} ight)^{2}

    P = 3{\overrightarrow{MG}}^{2} +
2\overrightarrow{MG}.\left( \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} ight)^{2} + GA^{2} + GB^{2} + GC^{2}

    P = 3MG^{2} + GA^{2} + GB^{2} + GC^{2}
\geq GA^{2} + GB^{2} + GC^{2}

    Dấu “=” xảy ra khi M \equiv
G

    Vậy P_{\min} = GA^{2} + GB^{2} +
GC^{2} với M \equiv G là trọng tâm tam giác ABC.

  • Câu 13: Thông hiểu
    Xác định số mệnh đề đúng

    Cho các mệnh đề sau:

    (I) Vectơ \overrightarrow{x} =\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} luôn đồng phẳng với hai vectơ \overrightarrow{a};\overrightarrow{b}.

    (II) Nếu có m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} và ít nhất một trong ba số m;n;p khác không thì ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng.

    (III) Nếu ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} không đồng phẳng và m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0} thì m = n = p = 0.

    Hỏi có bao nhiêu mệnh đề đúng?

    Hướng dẫn:

    Do \overrightarrow{x} được biểu thị qua hai vectơ \overrightarrow{a};\overrightarrow{b} nên (I) đúng.

    Xét mệnh đề (II): Giả sử m eq
0, khi đó:

    m\overrightarrow{a} +n\overrightarrow{b} + p\overrightarrow{c} = \overrightarrow{0}\Leftrightarrow \overrightarrow{a} = - \frac{n}{m}\overrightarrow{b} -\frac{p}{m}\overrightarrow{c}

    Suy ra ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c} đồng phẳng. Vậy mệnh đề (II) đúng.

    Do mệnh đề (III) tương đương với mệnh đề (II) nên mệnh đề (III) đúng.

  • Câu 14: Thông hiểu
    Tính giá trị của tham số k

    Cho hình hộp ABCD.A'B'C'D'. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{AC} +\overrightarrow{BA'} + k\left( \overrightarrow{DB} +\overrightarrow{C'D} ight) = \overrightarrow{0}

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AC} + \overrightarrow{BA'} = \overrightarrow{AC} +
\overrightarrow{CD'} = \overrightarrow{AD'} \\
\overrightarrow{DB} + \overrightarrow{C'D} = \overrightarrow{DB} -
\overrightarrow{DC'} = \overrightarrow{D'A} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC} +
\overrightarrow{BA'} + k\left( \overrightarrow{DB} +
\overrightarrow{C'D} ight) = \overrightarrow{AD'} +
k.\overrightarrow{D'A} = \overrightarrow{0}

    \Leftrightarrow \overrightarrow{AD'}
+ k.\overrightarrow{D'A} = \overrightarrow{0} \Leftrightarrow (k -
1).\overrightarrow{D'A} = \overrightarrow{0} \Leftrightarrow k - 1 =
0 \Leftrightarrow k = 1.

    Vậy k = 1.

  • Câu 15: Vận dụng
    Xác định giá trị thực của k

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MNP là một điểm bất kì trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{PI} =
k.\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} ight)?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của các cạnh AC;BD nên ta có: \left\{ \begin{matrix}
\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM} \\
\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN} \\
\end{matrix} ight..

    Mặt khác \overrightarrow{IM} +
\overrightarrow{IN} = \overrightarrow{0} (vì I là trung điểm của MN) suy ra \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
\overrightarrow{0}

    Theo bài ra ta có:

    \overrightarrow{PA} +
\overrightarrow{PB} + \overrightarrow{PC} +
\overrightarrow{PD}

    = 4\overrightarrow{PI} +
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID} = 4\overrightarrow{PI}

    \Rightarrow 4k = 1 \Rightarrow k =
\frac{1}{4}

  • Câu 16: Nhận biết
    Chọn mệnh đề đúng

    Cho tứ diện ABCD. Gọi G là trọng tâm tam giác BCD. Điểm M xác định bởi công thức \overrightarrow{AM} = \overrightarrow{AB} +
\overrightarrow{AC} + \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Do G là trọng tâm tam giác BCD nên \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} = 3\overrightarrow{AG}

    \Rightarrow \overrightarrow{AM} =
3\overrightarrow{AG}

    Vậy mệnh đề đúng là “M thuộc tia AGAM = 3AG”.

  • Câu 17: Thông hiểu
    Chọn khẳng định đúng

    Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEFK là tâm của hình bình hành BCGF. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)

    Mà GF // (ABCD); BD \subset
(ABCD) suy ra \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{GF} đồng phẳng.

  • Câu 18: Nhận biết
    Chọn phân tích đúng

    Cho tứ diện OABC. Gọi G là trọng tâm của tam giác ABC.Phân tích nào sau đây là đúng?

    Hướng dẫn:

    Ta có: G là trọng tâm tam giác ABC khi \overrightarrow{OG} = \frac{1}{3}\left(
\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}
ight)

  • Câu 19: Nhận biết
    Phân tích vectơ

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1}. Hãy phân tích vectơ \overrightarrow{BD} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA_{1}}?

    Hướng dẫn:

    Hình vẽ minh họa

    Theo quy tắc hình bình hành ta có:

    \overrightarrow{BD} =
\overrightarrow{AD} - \overrightarrow{AB} \Rightarrow
\overrightarrow{BD} = - \overrightarrow{AB} + \overrightarrow{AD} +
0.\overrightarrow{AA_{1}}

  • Câu 20: Nhận biết
    Chọn mệnh đề đúng

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Hướng dẫn:

    Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 14 lượt xem
Sắp xếp theo