Cho hàm số có bảng biến thiên:
Số đường tiệm cận ngang của đồ thị hàm số là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Cho hàm số có bảng biến thiên:
Số đường tiệm cận ngang của đồ thị hàm số là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Cho đồ thị hàm số như sau:
Đồ thị hàm số đã cho có phương trình tiệm cận đứng và tiệm cận ngang lần lượt là:
Dựa vào đồ thị hàm số ta thấy phương trình tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là .
Số các giá trị nguyên của tham số để đồ thị hàm số
có ba đường tiệm cận bằng:
Ta có:
nên
là tiệm cận ngang của đồ thị hàm số
Theo yêu cầu bài toán ta suy ra có hai nghiệm phân biệt
Mà
Vậy có 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số có bảng biến thiên như sau:
Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Xác định tâm đối xứng của đồ thị hàm số ?
Ta có:
suy ra tiệm cận ngang là
suy ra tiệm cận đứng là
Tâm đối xứng của đồ thị hàm số là .
Tập hợp tất cả các giá trị thực của tham số để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Cho hàm bậc ba có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Cho hàm bậc ba có đồ thị như hình vẽ:
Hỏi đồ thị hàm số có bao nhiêu đường tiệm cận?
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Tập xác định suy ra đồ thị hàm số không có tiệm cận ngang.
Suy ra không là đường tiệm cận đứng của đồ thị hàm số.
Suy ra là đường tiệm cận đứng của đồ thị hàm số.
Vậy đồ thị hàm số có 1 đường tiệm cận.
Gọi là tập tất cả các giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận. Tìm số phần tử của tập hợp
?
có một đường tiệm cận ngang là
Để có ba đường tiệm cận thì phải có hai nghiệm phân biệt khác
.
Tức là
Đồ thị của hàm số có bao nhiêu đường tiệm cận đứng?
Ta có:
Với thì
nên đồ thị hàm số có một tiệm cận đứng là
.
Hỏi đồ thị của hàm số có tất cả bao nhiêu đường tiệm cận (không xét tiệm cận xiên)?
Tập xác định
Ta có: nên đồ thị hàm số có tiệm cận ngang là
nên đồ thị hàm số có tiệm cận đứng là
Vậy đồ thị hàm số có 2 đường tiệm cận.
Đồ thị hàm số có bao nhiêu đường tiệm cận?
Ta có:
suy ra
là tiệm cận đứng của đồ thị hàm số.
suy ra đồ thị hàm số có tiệm cận ngang là
.
Vậy đồ thị hàm số có hai đường tiệm cận.
Cho hàm số xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:
Mệnh đề nào sau đây đúng?
Vì nên
là tiệm cận ngang của đồ thị hàm số.
Vì nên
là tiệm cận đứng của đồ thị hàm số.
Đồ thị hàm số có bao nhiêu đường tiệm cận đứng?
Tập xác định
Phương trình
Do đó không tồn tại các giới hạn . Vì vậy đồ thị hàm số không có đường tiệm cận đứng.
Đồ thị hàm số có tất cả bao nhiêu đường tiệm cận?
Hàm số xác định
Tập xác định
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Suy ra là tiệm cận ngang của đồ thị hàm số
Vậy đồ thị hàm số có 2 đường tiệm cận.
Đường tiệm cận ngang của đồ thị hàm số có phương trình là:
Ta có:
Vậy đường thẳng là tiệm cận ngang của đồ thị hàm số.
Đồ thị của hàm số có bao nhiêu đường tiệm cận?
Tập xác định
suy ra
là tiệm cận ngang của đồ thị hàm số đã cho.
suy ra đường thẳng
không là đường tiệm cận đứng của đồ thị hàm số đã cho.
suy ra đường thẳng
là đường tiệm cận đứng của đồ thị hàm số đã cho.
Vậy đồ thị hàm số đã cho có 2 đường tiệm cận.
Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là:
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Khi
Suy ra đồ thị hàm số có 1 tiệm cận ngang và 1 tiệm cận đứng
Vậy đồ thị hàm số có tất cả 4 đường tiệm cận.
Cho các hàm số sau:
Có bao nhiêu hàm số mà đồ thị hàm số tương ứng có đúng một tiệm cận ngang?
Ta có:
có
nên có 1 tiệm cận ngang là
.
có
nên có 2 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
có
nên có 1 tiệm cận ngang là
.
Vậy có 3 hàm số mà đồ thị có đúng 1 tiệm cận đứng.