Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Cho hai biến cố và
với
. Tính
?
Ta có:
Áp dụng công thức xác suất toàn phần ta có:
Có hai hộp thuốc:
Hộp I có 2 vỉ thuốc ngoại và 5 vỉ thuốc nội.
Hộp II có 3 vỉ thuốc ngoại và 6 vỉ thuốc nội.
Từ hộp I và hộp II lần lượt lấy ra 2 vỉ thuốc và 1 vỉ thuốc. Từ 3 vỉ thuốc đó lại lấy ra một vỉ. Tính xác suất để vỉ lấy ra sau cùng là thuốc ngoại?
Gọi A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp I”
A1 là biến cố “vỉ thuốc lấy ra sau cùng là của hộp II”
Ta có A1, A2 lập thành hệ đầy đủ các biến cố khi đó ta xác định được:
Gọi B là biến cố “vỉ thuốc lấy ra sau cùng là thuốc ngoại”.
Theo công thức xác suất toàn phần ta có:
.
Cho hai biến cố và
với
. Biết
. Tính
?
Ta có công thức xác suất toàn phần tính là:
Cho hai biến cố và
, với
. Tính
?
Ta có:
.
Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Hùng lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.
Xét các biến cố:
: "Quả bóng lấy ra lần đầu có số chẵn"
: "Quả bóng lấy ra lần hai có số lẻ".
Xác định biến cố : "biến cố
với điều kiện biết
đã xảy ra".
Ta có:
Khi biến cố xảy ra, thì không gian mẫu mới là
.
Khi đó, biến cố
Một cặp trẻ sinh đôi có thể do cùng một trứng (sinh đôi thật) hay do hai trứng khác nhau sinh ra (sinh đôi giả). Các cặp sinh đôi thật luôn luôn có cùng giới tính. Các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập với nhau và có xác suất là . Thống kê cho thấy
cặp sinh đôi là trai;
cặp sinh đôi là gái và
cặp sinh đôi có giới tính khác nhau. Tính tỷ lệ cặp sinh đôi thật.
Gọi A: “Nhận được cặp sinh đôi thật”
B: “Nhận được cặp sinh đôi có cùng giới tính”
Do các cặp sinh đôi thật luôn luôn có cùng giới tính nên
Với các cặp sinh đôi giả thì giới tính của mỗi đứa độc lập nhau và có xác suất là 0,5 nên
Do thống kê trên các cặp sinh đôi nhận được thì:
Áp dụng công thức xác suất toàn phần ta có:
Thay số ta xác định được .
Cho hai biến cố với
. Tính
?
Ta có:
Cho ba biến cố độc lập từng đôi thỏa mãn
và
. Xác định
?
Ta có:
Cho hai biến cố với
. Tính
?
Ta có:
Ba người thợ cùng may một loại áo với xác suất may được sản phẩm chất lượng cao tương ứng là . Biết một người khi may 8 áo thì có 6 sản phẩm chất lượng cao. Tìm xác suất để người đó may 8 áo nữa thì có 6 áo chất lượng cao?
Áp dụng công thức xác suất đầy đủ
Gọi là "trong 8 áo sau có 6 áo chất lượng cao". Vì trong không gian điều kiện
, hệ
vẫn là hệ đầy đủ.
Áp dụng công thức xác suất toàn phần có
Ở đó:
Thay vào ta tính được
Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng và
. do có nhiễu trên đường truyền nên
tín hiệu A bị méo và thu được như tín hiệu B còn
tín hiệu B bị méo và thu được như A. Tìm xác suất thu được tín hiệu A?
Gọi A, B lần lượt là "phát ra tín hiệu A, B".
Khi đó A, B tạo thành hệ đầy đủ.
Gọi C là "thu được tín hiệu A". Khi đó:
Áp dụng công thức xác suất toàn phần ta có:
.
Ta cần tính P(A|C). Áp dụng công thức Bayes ta có:
Một công nhân đứng hai máy hoạt động độc lập nhau. Xác suất để máy thứ nhất, máy thứ 2 không bị hỏng trong một ca làm việc lần lượt là và
. Tính xác suất để cả 2 máy đều không bị hỏng trong một ca làm việc?
Gọi A là biến cố cả 2 máy đều không bị hỏng trong một ca làm việc
Theo yêu cầu của đầu bài, ta phải tính P(A)
Nếu gọi Ai là biến cố máy thứ i không bị hỏng trong một ca làm việc với
Khi đó ta có:
Vì vậy xác suất cần tìm là:
Theo giả thiết A1, A2 là 2 biến cố độc lập với nhau nên ta có:
Một sinh viên làm 2 bài tập kế tiếp. Xác suất làm đúng bài thứ nhất là . Nếu làm đúng bài thứ nhất thì khả năng làm đúng bài thứ 2 là
, nhưng nếu làm sai bài thứ 1 thì khả năng làm đúng bài thứ 2 là
. Tính xác suất để sinh viên làm đúng ít nhất một bài?
Gọi A1 là biến cố làm đúng bài 1
Gọi A2 là biến cố làm đúng bài 2
Làm đúng ít nhất 1 bài
Cho hai biến cố và
, với
.
a) Đúng||Sai
b) Đúng||Sai
c) Sai|| Đúng
d) Sai|| Đúng
Cho hai biến cố và
, với
.
a) Đúng||Sai
b) Đúng||Sai
c) Sai|| Đúng
d) Sai|| Đúng
a) Ta có:
b)
c)
d)
Cho hai biến cố và
là hai biến cố độc lập, với
. Tính
?
Hai biến cố và
là hai biến cố độc lập nên
.
Cho hai biến cố và
, với
. Tính
?
Ta có:
.
Có hai lô sản phẩm: lô I có 7 chính phẩm, 3 phế phẩm; lô II có 8 chính phẩm, 2 phế phẩm. Từ lô I lấy ngẫu nhiên ra 2 sản phẩm, từ lô II lấy ngẫu nhiên ra 3 sản phẩm. Sau đó từ số sản phẩm này lại lấy ngẫu nhiên 2 sản phẩm. Tính xác suất để trong 2 sản phẩm lấy ra sau cùng có ít nhất 1 chính phẩm.
Gọi là "trong 5 sản phẩm cuối có
chính phẩm".
Khi đó hệ tạo thành hệ đầy đủ
xảy ra thì phải lấy 3 phế phẩm từ lô II, điều này là không thể.
Suy ra
xảy ra nếu lấy 2 phế từ lô I và 1 chính, 1 phế từ lô II.
xảy ra nếu lấy 1 chính, 1 phế từ lô
chính, 2 phế từ lô II hoặc 2 phế từ lô
chính, 1 phế từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô
hoặc 1 chính, 1 phế từ lô
chính, 1 phế từ lô II hoặc 2 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính, 2 phế từ lô II hoặc 1 chính, 1 phế từ lô
chính từ lô II
xảy ra nếu lấy 2 chính từ lô
chính từ lô II
Gọi là "trong 2 sản phẩm lấy ra có ít nhất 1 chính phẩm", áp dụng công thức xác suất đầy đủ
Suy ra .
Một cuộc khảo sát người về hoạt động thể dục thấy có
số người thích đi bộ và
thích đạp xe vào buổi sáng và tất cả mọi người đều tham gia ít nhất một trong hai hoạt động trên. Chọn ngẫu nhiên một người hoạt động thể dục. Nếu gặp được người thích đi xe đạp thì xác suất mà người đó không thích đi bộ là bao nhiêu?
Gọi A là "người thích đi bộ", B là "người thích đi xe đạp"
Theo giả thiết: .
Ta có:
Trong một vùng dân cư, cứ người thì có
người hút thuốc lá. Biết tỷ lệ người bị viêm họng trong số người hút thuốc lá là
, trong số người không hút thuốc lá là
. Khám ngẫu nhiên một người và thấy người đó bị viêm họng. Tìm xác suất để người đó hút thuốc lá?
Gọi A: "Người này hút thuốc"
B: "Người này bị viêm họng"
Theo giả thiết ta có:
Ta thấy rằng là một hệ đầy đủ các biến cố.
Theo công thức xác suất toàn phần ta tính được:
Theo công thức Bayes, xác suất để người đó hút thuốc lá khi biết người đó bị viêm họng là:
Để gây đột biến cho một tính trạng người ta tìm cách tác động lên hai gen bằng phóng xạ. Xác suất đột biến của tính trạng do gen
là
; do gen B là
và do cả hai gen là
. Tính xác suất để có đột biến ở tính trạng đó biết rằng phóng xạ có thể tác động lên gen
với xác suất
và lên gen
với xác suất
?
Gọi C là biến cố có đột biến ở tính trạng đang xét
A là biến cố phóng xạ tác dụng lên gen A
B là biến cố phóng xạ tác dụng lên gen B
C1 là biến cố phóng xạ chỉ tác động lên gen A
C2 là biến cố phóng xạ chỉ tác dụng lên gen B
C3 là biến cố phóng xạ tác dụng lên cả 2 gen
là biến cố phóng xạ không tác dụng lên gen nào
Khi đó hệ là một hệ đầy đủ
Mặt khác độc lập nên
Mặt khác và
Theo công thức xác suất toàn phần ta có: