Luyện tập Ba đường conic trong mặt phẳng tọa độ

Trắc nghiệm Toán 10 Bài 4: Ba đường conic trong mặt phẳng tọa độ được Khoahoc trình bày dưới dạng bài tập trực tuyến nên các em học sinh có thể trực tiếp vào làm bài và kiểm tra kết quả ngay khi làm xong. Nhằm giúp học sinh lớp 10 củng cố và rèn luyện kỹ năng tính toán, khả năng tư duy với các dạng bài tập mới nhất.

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 10 câu
  • Điểm số bài kiểm tra: 10 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tìm độ dài các đoạn thẳng

    Cho elip (E): \frac{x^{2}}{169}+\frac{y^{2}}{144}=1. Nếu điểm M nằm trên (E) có hoành độ bằng –13 thì độ dài MF_1MF_2 lần lượt là:

    Hướng dẫn:

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 13;b = 12} ight)

    Ta có: c = \sqrt {{a^2} - {b^2}}  = 5

    Khi đó: {F_1}\left( { - 5;0} ight);{F_2}\left( {5;0} ight)

    Với M\left( {{x_M};{y_M}} ight) ta có:

    \begin{matrix}  \overrightarrow {{F_1}M}  = \left( {{x_M} + 5;{y_M}} ight) \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {{x_M} + 5} ight)}^2} + 144.\left( {1 - \frac{{{x_M}^2}}{{169}}} ight)}  \hfill \\   \Rightarrow {F_1}M = \sqrt {169 + 10{x_M} + \dfrac{{25{x_M}^2}}{{169}}}  \hfill \\   \Rightarrow {F_1}M = \sqrt {{{\left( {13 + \dfrac{{5{x_M}}}{{13}}} ight)}^2}}  \hfill \\   \Rightarrow {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}},\left( {{F_1}M > 0} ight) \hfill \\ \end{matrix}

    Tương tự ta có: {F_2}M = 13 - \frac{{5{x_M}}}{{13}},\left( {{F_2}M > 0} ight)

    Theo bài ra ta có: {x_M} =  - 13

    \begin{matrix}  {F_1}M = 13 + \dfrac{{5{x_M}}}{{13}} = 8 \hfill \\  {F_2}M = 13 - \dfrac{{5{x_M}}}{{13}} = 18 \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu
    Chọn khẳng định sai

    Cho elip (E): \frac{x^{2}}{25}+\frac{y^{2}}{9}=1. Trong các khẳng định sau, khẳng định nào sai?

    Hướng dẫn:

    Phương trình elip (E) có dạng \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1;\left( {a = 5;b = 3} ight)

    Ta có: b = \sqrt {{a^2} - {c^2}}  = 4

    Khi đó: {F_1}\left( { - 4;0} ight);{F_2}\left( {4;0} ight) đúng

    Ta có: \frac{c}{a}=\frac{4}{5} đúng

    Đỉnh A1(–a; 0) => A1(–5; 0) đúng

    Độ dài trục nhỏ là 2b = 2.3 = 6 ≠ 3 

    Vậy khẳng định sai là: (E) có độ dài trục nhỏ bằng 3.

  • Câu 3: Thông hiểu
    Tỉ số giữa độ dài trục ảo và độ dài trục thực

    Cho hypebol (H): \frac{x^{2}}{36}+\frac{y^{2}}{9}=1. Tỉ số giữa độ dài trục ảo và độ dài trục thực bằng:

    Hướng dẫn:

    Ta có: \frac{x^{2}}{36}+\frac{y^{2}}{9}=1

    Ta có: a = 6; b =3

    => Độ dài trục ảo là 6, độ dài trục thực là 12

    => Tỉ số giữa độ dài trục ảo và độ dài trục thực là: 

    \frac{{2b}}{{2a}} = \frac{6}{{12}} = \frac{1}{2}

  • Câu 4: Thông hiểu
    Chọn khẳng định đúng

    Cho hypebol (H): 4x^{2} – y^{2} = 1. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \begin{matrix}  4{x^2} - {y^2} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{\dfrac{1}{4}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Leftrightarrow \dfrac{{{x^2}}}{{{{\left( {\dfrac{1}{2}} ight)}^2}}} - \dfrac{{{y^2}}}{1} = 1 \hfill \\   \Rightarrow a = \dfrac{1}{2};b = 1 \Rightarrow c = \sqrt {{a^2} - {b^2}}  = \dfrac{{\sqrt 5 }}{2} \hfill \\ \end{matrix}

    Vậy Hypebol (H) có tiêu cự 2c = \sqrt 5  e \frac{{\sqrt 5 }}{2}

    => Hai tiêu điểm của (H) là: {F_1} = \left( { - \frac{{\sqrt 5 }}{2};0} ight);{F_2} = \left( {\frac{{\sqrt 5 }}{2};0} ight)

    Ta có trục thực là: {A_1}{A_2} = 2a = 2.\frac{1}{2} = 1

    Trục ảo là: 2b = 2.1 = 2 e \frac{1}{2}

    Vậy khẳng định đúng là:" Hypebol có trục thực bằng 1".

  • Câu 5: Vận dụng
    Tìm tọa độ điểm M

    Cho parabol (P) có đường chuẩn là đường thẳng ∆: x + 5 = 0. Điểm M thuộc (P) sao cho khoảng cách từ M đến tiêu điểm của parabol (P) bằng 6. Tọa độ điểm M là:

    Hướng dẫn:

    Phương trình đường chuẩn ∆: x + 5 = 0

    => \frac{p}{2} = 5

    => p = 10

    Từ đó ta thu được phương trình parabol (P): y^2 = 20x.

    Tiêu điểm F của (P) là F(5; 0).

    Giả sử điểm M(x_M; y_M) là điểm thuộc (P).

    => y^2_M=20x_M

    Với F(5; 0)M(x_M; y_M) ta có:

    \begin{matrix}  \overrightarrow {FM}  = \left( {{x_M} - 5;{y_M}} ight) \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} - 5} ight)}^2} + {y_M}^2}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 - 10{x_M} + 25 + 20{x_M}}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{x_M}^2 + 10{x_M} + 25}  \hfill \\   \Rightarrow \left| {\overrightarrow {FM} } ight| = \sqrt {{{\left( {{x_M} + 5} ight)}^2}}  = {x_M} + 5 \hfill \\  FM = 6 \Rightarrow {x_M} + 5 = 6 \Rightarrow {x_M} = 1 \hfill \\ \end{matrix}

    Với {x_M} = 1 \Rightarrow {y_M}^2 = 20.1 = 20

    Vậy tọa độ điểm M là: M(1;-2\sqrt{5}),M(1;-2\sqrt{5})

  • Câu 6: Vận dụng
    Tính bán kính đáy của tháp

    Một tòa tháp có mặt cắt hình hypebol có phương trình \frac{x^{2}}{36}-\frac{y^{2}}{49}=1. Biết khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp. Tòa tháp có chiều cao 50 m. Bán kính đáy của tháp bằng:

    Hướng dẫn:

    Gọi r là bán kính đáy của tháp (r > 0)

    Do khoảng cách từ nóc tháp đến tâm đối xứng O của hypebol bằng khoảng cách từ tâm đối xứng O đến đáy tháp và do tính đối xứng của hypebol nên ta có hai bán kính của nóc và đáy tháp đều bằng nhau.

    Chọn điểm M(r; –25) nằm trên hypebol nên ta có:

    \begin{matrix}  \dfrac{{{r^2}}}{{36}} - \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = 1 \hfill \\   \Leftrightarrow \dfrac{{{r^2}}}{{36}} = 1 + \dfrac{{{{\left( { - 25} ight)}^2}}}{{49}} = \dfrac{{674}}{{49}} \hfill \\   \Leftrightarrow {r^2} = \dfrac{{674}}{{49}}.36 = \dfrac{{24264}}{{49}} \hfill \\   \Rightarrow r \approx 22,25\left( m ight) \hfill \\ \end{matrix}

    Vậy Bán kính đáy của tháp khoảng 22,25m.

  • Câu 7: Thông hiểu
    Tìm tọa độ đỉnh của elip

    Cho phương trình Elip \frac{x^{2}}{16}+\frac{y^{2}}{4}=1. Tọa độ đỉnh A_1B_1 của Elip đó là:

    Hướng dẫn:

    Ta có: \frac{x^{2}}{16}+\frac{y^{2}}{4}=1 => a = 4; b = 2

    => Tọa độ các đỉnh của elip là: {A_1}\left( { - 4;0} ight);{B_1}\left( {0; - 2} ight)

  • Câu 8: Thông hiểu
    Tính độ dài tiêu cự của elip

    Bác An dự định xây một cái ao hình elip ở giữa khu vườn. Biết trục lớn có độ dài bằng 4 m, độ dài trục nhỏ bằng 2 m. Gọi F_1, F_2 là các tiêu điểm của elip. Khi đó độ dài F_1F_2 bằng:

    Hướng dẫn:

    Ta có độ dài trục lớn bằng 4 m. 

    => 2a = 4 => a = 2.

    Lại có độ dài trục nhỏ bằng 2m. 

    => 2b = 2=> b = 1

    Ta có c = \sqrt {{a^2} - {b^2}}  = \sqrt 3

    => {F_1}{F_2} = 2c = 2\sqrt 3

  • Câu 9: Thông hiểu
    Tính độ dài trục thực của Hypebol

    Cho phương trình Hypebol \frac{x^{2}}{16}-\frac{y^{2}}{9}=1. Độ dài trục thực của Hypebol đó là

    Hướng dẫn:

    Ta có: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1 ta có: a = 4; b = 3

    => Độ dài trục thực của Hypebol đó là 2a = 8

  • Câu 10: Thông hiểu
    Đường chuẩn của parabol

    Đường chuẩn của Parabol y^{2} = 14x là:

    Hướng dẫn:

    Từ phương trình Parabol y^{2} = 14x ta có 2p = 14 => p = 7

    Do đó phương trình đường chuẩn của Parabol là x + \frac{7}{2} = 0

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (70%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 41 lượt xem
Sắp xếp theo