Luyện tập Phép tính lũy thừa với số mũ thực

Khoahoc.vn xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Phép tính lũy thừa với số mũ thực sách Chân trời sáng tạo. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Thu gọn biểu thức C

    Thực hiện thu gọn biểu thức C = \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2}.\left( 1 - 2\sqrt{\frac{x}{y}} + \frac{y}{x} ight)^{-
1} với x > 0;y > 0 ta được kết quả là:

    Hướng dẫn:

    Ta có:

    \left( x^{\frac{1}{2}} - y^{\frac{1}{2}}
ight)^{2} = \left( \sqrt{x} - \sqrt{y} ight)^{2}

    Ta cũng có:

    \left( 1 - 2\sqrt{\frac{x}{y}} +
\frac{y}{x} ight)^{- 1} = \left\lbrack \left( \sqrt{\frac{y}{x}} - 1
ight)^{2} ightbrack^{- 1}

    = \left( \frac{\sqrt{y} -
\sqrt{x}}{\sqrt{x}} ight)^{- 2} = \left( \frac{\sqrt{x}}{\sqrt{y} -
\sqrt{x}} ight)^{2}

    Khi đó:

    C = \left( \sqrt{x} - \sqrt{y}
ight)^{2}.\left( \frac{\sqrt{x}}{\sqrt{x} - \sqrt{y}} ight)^{2} =
x

  • Câu 2: Thông hiểu
    Rút gọn biểu thức B

    Rút gọn biểu thức B = \left( \frac{a + b}{\sqrt[3]{a} + \sqrt[3]{b}}
- \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2} biết a^{2} eq
b^{2}.

    Hướng dẫn:

    Ta có:

    B = \left( \frac{a + b}{\sqrt[3]{a} +
\sqrt[3]{b}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
\sqrt[3]{ab} + \sqrt[3]{b^{2}} - \sqrt[3]{ab} ight):\left( \sqrt[3]{a}
- \sqrt[3]{b} ight)^{2}

    B = \left( \sqrt[3]{a^{2}} -
2\sqrt[3]{ab} + \sqrt[3]{b^{2}} ight):\left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}

    B = \left( \sqrt[3]{a} - \sqrt[3]{b}
ight)^{2}:\left( \sqrt[3]{a} - \sqrt[3]{b} ight)^{2} =
1

  • Câu 3: Vận dụng
    Tính giá trị biểu thức

    Nếu \sqrt{x^{2} +
\sqrt[3]{x^{4}y^{2}}} + \sqrt{y^{2} + \sqrt[3]{y^{4}x^{2}}} = a thì giá trị biểu thức x^{\frac{2}{3}} +
y^{\frac{2}{3}} bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    \sqrt{x^{2} + \sqrt[3]{x^{4}y^{2}}} +
\sqrt{y^{2} + \sqrt[3]{y^{4}x^{2}}} = a

    \Leftrightarrow
\sqrt{\sqrt[3]{x^{3}}\left( \sqrt[3]{x^{2}} + \sqrt[3]{y^{2}} ight)} +
\sqrt{\sqrt[3]{y^{3}}\left( \sqrt[3]{y^{2}} + \sqrt[3]{x^{2}} ight)} =
a

    \Leftrightarrow \sqrt{\left(
\sqrt[3]{x^{2}} + \sqrt[3]{y^{2}} ight)}\left( \sqrt{\sqrt[3]{x^{4}}}
+ \sqrt{\sqrt[3]{y^{4}}} ight) = a

    \Leftrightarrow \sqrt{\left(
\sqrt[3]{x^{2}} + \sqrt[3]{y^{2}} ight)^{3}} = a

    \Leftrightarrow \sqrt[3]{x^{2}} +
\sqrt[3]{y^{2}} = a^{\frac{2}{3}}

  • Câu 4: Nhận biết
    Tính giá trị biểu thức M

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

  • Câu 5: Thông hiểu
    Tính giá trị biểu thức D

    Tính giá trị biểu thức D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    Hướng dẫn:

    Ta có:

    D = 3^{1 - \sqrt{2}}.3^{2 +
\sqrt{2}}.9^{\frac{1}{2}}

    D = 3^{1 - \sqrt{2} + 2 + \sqrt{2} + 1}
= 3^{4} = 81

  • Câu 6: Nhận biết
    Tính giá trị biểu thức

    Tính 2^{3 -\sqrt{2}}.4^{\sqrt{2}}.

    Hướng dẫn:

    Ta có:

    2^{3 - \sqrt{2}}.4^{\sqrt{2}} = 2^{3 -\sqrt{2}}.\left( 2^{2} ight)^{\sqrt{2}}

    = 2^{3 - \sqrt{2}}.2^{2\sqrt{2}} = 2^{3- \sqrt{2} + 2\sqrt{2}} = 2^{3 + \sqrt{2}}

  • Câu 7: Nhận biết
    Viết biểu thức dưới dạng lũy thừa với số mũ hữu tỉ

    Cho m là số thực dương. Viết m^{2}.\sqrt[3]{m} dưới dạng lũy thừa với số mũ hữu tỉ ta được:

    Hướng dẫn:

    Ta có: m^{2}.\sqrt[3]{m} =
m^{2}.m^{\frac{1}{3}} = m^{2 + \frac{1}{3}} =
m^{\frac{7}{3}}

  • Câu 8: Nhận biết
    Tìm biểu thức không có nghĩa

    Trong các biểu thức sau, biểu thức nào không có nghĩa?

    Hướng dẫn:

    Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức ( - 4)^{- \frac{1}{3}} không có nghĩa.

  • Câu 9: Thông hiểu
    Chọn khẳng định đúng

    Cho \left(
\sqrt{5} - 2 ight)^{x} > \left( \sqrt{5} - 2 ight)^{y}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: \sqrt{5} - 2 < 1 do đó nếu \left( \sqrt{5} - 2 ight)^{x} >
\left( \sqrt{5} - 2 ight)^{y} \Rightarrow x < y

  • Câu 10: Vận dụng
    Chọn khẳng định đúng

    Biết \left(
\sqrt{5} - 2 ight)^{- a} > \left( \sqrt{5} + 2
ight)^{b}. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có:

    \sqrt{5} - 2 = \frac{1}{\sqrt{5} +
2};\sqrt{5} + 2 > 1

    Nên \left( \sqrt{5} - 2 ight)^{- a}
> \left( \sqrt{5} + 2 ight)^{b}

    \Leftrightarrow \left( \sqrt{5} + 2
ight)^{a} > \left( \sqrt{5} + 2 ight)^{b} \Leftrightarrow a >
b

  • Câu 11: Thông hiểu
    Rút gọn biểu thức B

    Rút gọn biểu thức E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{-
2}} với a,b là hai số thực dương.

    Hướng dẫn:

    Ta có:

    E = \frac{a^{2}.\left( a^{- 2}.b^{3}
ight)^{2}.b^{- 1}}{\left( a^{- 1}.b ight)^{3}.a^{- 5}.b^{- 2}} =
\frac{\left( a^{2}.a^{- 4} ight).\left( b^{6}.b^{- 1} ight)}{\left(
a^{- 3}.a^{- 5} ight)\left( b^{3}.b^{- 2} ight)} =
a^{6}b^{4}

  • Câu 12: Vận dụng
    Tính giá trị biểu thức M

    Biết khi rút gọn biểu thức \frac{6 + 3\left( 3^{x} + 3^{- x} ight)}{2 -
3^{x + 1} - 3^{1 - x}} thu được phân số \frac{a}{b} tối giản và 9^{x} + 9^{- x} = 14 . Tính giá trị biểu thức M = a.b.

    Hướng dẫn:

    Ta có:

    9^{x} + 9^{- x} = 14 \Leftrightarrow
\left( 3^{x} + 3^{- x} ight)^{2} = 16

    \Leftrightarrow 3^{x} + 3^{- x} =
4

    Ta lại có:

    \frac{6 + 3\left( 3^{x} + 3^{- x}
ight)}{2 - 3^{x + 1} - 3^{1 - x}} = \frac{6 + 3.4}{2 - 3.4} =
\frac{18}{- 10} = \frac{9}{- 5}

    \Rightarrow M = a.b = - 45

  • Câu 13: Vận dụng
    Tính rút gọn biểu thức Z

    Thực hiện rút gọn biểu thức Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6} ta thu được kết quả là:

    Hướng dẫn:

    Ta có:

    Z = \left(
\frac{a^{\frac{1}{3}}.b^{\frac{1}{3}}}{2a^{- \frac{1}{3}} - b^{-
\frac{1}{3}}} + \frac{a^{\frac{1}{3}} - 2b^{\frac{1}{3}}}{4a^{-
\frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}}}
ight).\frac{8b - a}{6}

    Z = \frac{8b - a}{6} \cdot
\frac{a^{\frac{1}{3}}b^{\frac{1}{3}}\left( 4a^{- \frac{2}{3}} + 2a^{-
\frac{1}{3}}b^{- \frac{1}{3}} + b^{- \frac{2}{3}} ight) + \left( 2a^{-
\frac{1}{3}} - b^{- \frac{1}{3}} ight)\left( a^{\frac{1}{3}} -
2b^{\frac{1}{3}} ight)}{\left( 2a^{- \frac{1}{3}} - b^{- \frac{1}{3}}
ight)\left( 4a^{- \frac{2}{3}} + 2a^{- \frac{1}{3}}b^{- \frac{1}{3}} +
b^{- \frac{2}{3}} ight)}

    Z = \frac{8b - a}{6} \cdot \frac{4a^{-
\frac{1}{3}}b^{\frac{1}{3}} + 2 + a^{\frac{1}{3}}b^{- \frac{1}{3}} + 2 -
4a^{- \frac{1}{3}}b^{\frac{1}{3}} - a^{\frac{1}{3}}b^{- \frac{1}{3}} +
2}{8a^{- 1} - b^{- 1}}

    Z = \frac{8b - a}{6} \cdot\frac{6}{\dfrac{8}{a} - \dfrac{1}{b}} = \frac{8b - a}{6} \cdot\frac{6ab}{8b - a} = ab

  • Câu 14: Thông hiểu
    Tính giá trị biểu thức G

    Tính giá trị biểu thức G = \frac{a - 3 - 4a^{- 1}}{a^{\frac{1}{2}} -
4a^{\frac{- 1}{2}}} - \frac{1}{a^{- \frac{1}{2}}} với a là một số thực dương.

    Hướng dẫn:

    Ta có:

    G = \frac{a - 3 - 4a^{-
1}}{a^{\frac{1}{2}} - 4a^{\frac{- 1}{2}}} - \frac{1}{a^{-
\frac{1}{2}}}

    G = \frac{\frac{a^{2} - 3a -
4}{a}}{\frac{a - 4}{\sqrt{a}}} - \sqrt{a}

    G = \frac{a^{2} - 3a - 4}{\sqrt{a}(a -
4)} - \sqrt{a}

    G = \frac{a^{2} - 3a - 4 - a(a -
4)}{\sqrt{a}(a - 4)}

    G = \frac{a - 4}{\sqrt{a}(a - 4)} = a^{-
\frac{1}{2}}

  • Câu 15: Thông hiểu
    Chọn kết luận đúng

    Cho \left(
\sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y}, khi đó:

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}
0 < \sqrt{2} - 1 < 1 \\
\left( \sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y} \\
\end{matrix} ight.\  \Rightarrow x > y

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (27%):
    2/3
  • Thông hiểu (47%):
    2/3
  • Vận dụng (27%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 24 lượt xem
Sắp xếp theo