Luyện tập BPT mũ và BPT lôgarit (Khó)

Hãy cùng Luyện tập củng cố các bài tập Trắc nghiệm Bất phương trình mũ và bất phương trình lôgarit các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng cao
    Tìm tất cả các giá trị thực của tham số

    Tìm tất cả các giá trị thực của tham số m để bất phương trình {\log _2}\left( {7{x^2} + 7} ight) \geqslant {\log _2}\left( {m{x^2} + 4x + m} ight),{\text{ }}\forall x \in \mathbb{R} \, \, (1)

    Hướng dẫn:

     Bất phương trình tương đương 7{x^2} + 7 \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {7 - m} ight){x^2} - 4x + 7 - m \geqslant 0{\text{   }}(2) \hfill \\  m{x^2} + 4x + m > 0{\text{                 }}(3) \hfill \\ \end{gathered}  ight.,{\text{ }}\forall x \in \mathbb{R}.

    m=7: (2) không thỏa \forall x \in \mathbb{R}

    m=0: (3) không thỏa \forall x \in \mathbb{R}

    (1) thỏa mãn \forall x \in \mathbb{R}  \Leftrightarrow \left\{ \begin{gathered}  7 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {7 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }}

    \Leftrightarrow {\text{  }}\left\{ \begin{gathered}  m < 7 \hfill \\  m \leqslant 5 \hfill \\  m > 0 \hfill \\  m > 2 \hfill \\ \end{gathered}  ight.{\text{  }} \Leftrightarrow {\text{  }}2 < m \leqslant 5.

    Vậy m \in \left( {2;5} ight].

  • Câu 2: Nhận biết
    Điền đáp án

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

    Đáp án là:

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

     Điều kiện: \left\{ \begin{gathered}  5x + 15 > 0 \hfill \\  {x^2} + 6{\text{x}} + 8 > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 3 \hfill \\  \left[ \begin{gathered}  x >  - 2 \hfill \\  x <  - 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x >  - 2

    Vậy để BPT xác định khi và chỉ khi x >  - 2.

  • Câu 3: Nhận biết
    BPT có nghĩa khi nào?

    Điều kiện xác định của Bất phương trình {\log _2}\left[ {3{{\log }_2}\left( {3x - 1} ight) - 1} ight] \leq x là?

    Hướng dẫn:

     Biểu thức {\log _2}\left[ {3{{\log }_2}\left( {3x - 1} ight) - 1} ight] \leq x xác định khi và chỉ khi:

     

    \left\{ \begin{gathered}  3{\log _2}\left( {3x - 1} ight) - 1 > 0 \hfill \\  3x - 1 > 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  {\log _2}\left( {3x - 1} ight) > \frac{1}{3} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  3x - 1 > {2^{\frac{1}{3}}} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{{{2^{\frac{1}{3}}} + 1}}{3} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight. \Leftrightarrow x > \frac{{{2^{\frac{1}{3}}} + 1}}{3}

     

  • Câu 4: Vận dụng
    Tổng 2 nghiệm BPT mũ

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

    Đáp án là:

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

     Ta có: {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}

    \Leftrightarrow {8.2^{{x^2} + 1}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{{4.2}^{2\left( {{x^2} + 1} ight)}} - {{4.2}^{{x^2} + 1}} + 1}

    Đặt t = {2^{{x^2} + 1}}\left( {t \geqslant 2} ight), phương trình trên tương đương với

    8t = {t^2} + \sqrt {4{t^2} - 4t + 1}  \Leftrightarrow {t^2} - 6t - 1 = 0 \Leftrightarrow t = 3 + \sqrt {10} (vì t \geqslant 2).

    Từ đó suy ra {2^{{x^2} + 1}} = 3 + \sqrt {10}  \Leftrightarrow \left[ \begin{gathered}  {x_1} = \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\  {x_2} =  - \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\ \end{gathered}  ight.

     

    Vậy tổng hai nghiệm bằng 0.

  • Câu 5: Vận dụng cao
    Tìm tham số m sao cho khoảng thuộc tập nghiệm

    Tìm tất cả các giá trị thực của tham số m sao cho khoảng (2;3) thuộc tập nghiệm của bất phương trình {\log _5}\left( {{x^2} + 1} ight) > {\log _5}\left( {{x^2} + 4x + m} ight) - 1{\text{   (1)}}.

    Hướng dẫn:

    Ta có: (1) \Leftrightarrow \left\{ \begin{gathered}  {x^2} + 1 > \frac{{{x^2} + 4x + m}}{5} \hfill \\  {x^2} + 4x + m > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  m >  - {x^2} - 4x = f(x) \hfill \\  m < 4{x^2} - 4x + 5 = g(x) \hfill \\ \end{gathered}  ight.

    Hệ trên thỏa mãn:

    \forall x \in \left( {2;3} ight) \Leftrightarrow \left\{ \begin{gathered}  m \geqslant \mathop {Max}\limits_{2 < x < 3} f(x) =  - 12{\text{   khi  }}x = 2 \hfill \\  m \leqslant \mathop {Min}\limits_{2 < x < 3} f(x) = 13{\text{      khi  }}x = 2 \hfill \\ \end{gathered}  ight.{\text{ }} \Leftrightarrow  - 12 \leqslant m \leqslant 13.

  • Câu 6: Thông hiểu
    Nghiệm nguyên lớn nhất

    Nghiệm nguyên lớn nhất của bất phương trình {\log _3}\left( {{{4.3}^{x - 1}}} ight) > 2x - 1 là: 

    x=1 || X=1 || x bằng 1

    Đáp án là:

    Nghiệm nguyên lớn nhất của bất phương trình {\log _3}\left( {{{4.3}^{x - 1}}} ight) > 2x - 1 là: 

    x=1 || X=1 || x bằng 1

    {\log _3}\left( {{{4.3}^{x - 1}}} ight) > 2x - 1  \Leftrightarrow {4.3^{x - 1}} > {3^{2x - 1}} \Leftrightarrow {3^{2x}} - {4.3^x} < 0

    \Leftrightarrow 0 < {3^x} < 4 \Leftrightarrow x < {\log _3}4

    Vậy nghiệm nguyên lớn nhất của BPT là x=1.

  • Câu 7: Thông hiểu
    Tìm tập nghiệm của BPT mũ

    Tập nghiệm của bất phương trình \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 là:

    Hướng dẫn:

     Ta có: \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 \Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 1\Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} - 1 \leqslant 0

    \Leftrightarrow \frac{{{{\left( {\frac{3}{2}} ight)}^x} - 3}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 0 \Leftrightarrow 1 < {\left( {\frac{3}{2}} ight)^x} \leqslant 3 \Leftrightarrow 0 < x \leqslant {\log _{\frac{3}{2}}}3.

  • Câu 8: Thông hiểu
    Tìm nghiệm nguyên MIN

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

     Điều kiện:

    {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight) \Leftrightarrow {\log _2}\left( {{{\log }_2}x} ight) > 2

    \Leftrightarrow {\log _2}x > 4 \Leftrightarrow x > 16

    Vậy nghiệm nguyên nhỏ nhất x=17.

  • Câu 9: Vận dụng
    Tìm nghiệm nguyên lớn nhất

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

    Đáp án là:

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

     Điều kiện: x>0

    Ta có: \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight)

    \Leftrightarrow \log _2^4x - {\left( {3{{\log }_2}x - 3} ight)^2} + 9\left( {5 - 2{{\log }_2}x} ight) - 4\log _2^2x < 0

    \Leftrightarrow \log _2^4x - 13\log _2^2x + 36 < 0

    \Leftrightarrow 4 < \log _2^2x < 9 \Leftrightarrow \left[ \begin{gathered}  2 < {\log _2}x < 3 \hfill \\   - 3 < {\log _2}x <  - 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4 < x < 8 \hfill \\  \frac{1}{8} < x < \frac{1}{4} \hfill \\ \end{gathered}  ight..

    Vậy nghiệm nguyên lớn nhất của bất phương trình là: x=7.

  • Câu 10: Vận dụng cao
    Tìm m để BPT mũ có nghiệm thỏa mãn

    Cho bất phương trình: {9^x} + \left( {m - 1} ight){.3^x} + m > 0\,\,\left( 1 ight). Tìm tất cả các giá trị của tham số để bất phương trình (1) nghiệm đúng \forall x>1.

    Hướng dẫn:

    Đặt t=3^x.

    Vì  x > 1 \Rightarrow t > 3. Bất phương trình đã cho thành: {t^2} + \left( {m - 1} ight).t + m > 0 nghiệm đúng \forall t \geqslant 3

    \Leftrightarrow \frac{{{t^2} - t}}{{t + 1}} >  - m nghiệm đúng \forall t \geqslant 3.

    Xét hàm số:  g\left( t ight) = t - 2 + \frac{2}{{t + 1}},\forall t > 3,g'\left( t ight) = 1 - \frac{2}{{{{\left( {t + 1} ight)}^2}}} > 0,\forall t > 3.

    Hàm số đồng biến trên \left[ {3; + \infty } ight)g\left( 3 ight) = \frac{3}{2}. Yêu cầu bài toán tương đương - m \leqslant \frac{3}{2} \Leftrightarrow m \geqslant  - \frac{3}{2}.

  • Câu 11: Vận dụng cao
    Tìm m để BPT có nghiệm

    Với giá trị nào của tham số m thì bất phương trình {2^{{{\sin }^2}x}} + {3^{{\text{co}}{{\text{s}}^2}x}} \geqslant m{.3^{{{\sin }^2}x}} có nghiệm?

    Hướng dẫn:

     Chia hai vế của bất phương trình cho {3^{{{\sin }^2}x}} > 0, ta được:

    {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} \geqslant m

    Xét hàm số y = {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} là hàm số nghịch biến.

    Ta có: 0 \leqslant {\sin ^2}x \leqslant 1 nên 1 \leqslant y \leqslant 4.

    Vậy bất phương trình có nghiệm khi m \leqslant 4.

  • Câu 12: Nhận biết
    Tìm điều kiện xác định

    Tìm điều kiện xác định của bất phương trình sau:

    {\log _2}(x + 1) - 2{\log _4}(5 - x) < 1 - {\log _2}(x - 2)

    Hướng dẫn:

    BPT xác định khi : \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  5 - x > 0 \hfill \\  x - 2 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  x < 5 \hfill \\  x > 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow 2 < x < 5

  • Câu 13: Nhận biết
    Tập nghiệm của bất phương trình

    Tập nghiệm của bất phương trình {\log _3}\frac{{4x + 6}}{x} \leqslant 0 là: 

    Hướng dẫn:

     Ta có: {\log _3}\frac{{4{\text{x}} + 6}}{x} \leqslant 0 \Leftrightarrow \left\{ \begin{gathered}  \frac{{4{\text{x}} + 6}}{x} > 0 \hfill \\  \frac{{4{\text{x}} + 6}}{x} \leqslant 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x <  - \frac{3}{2} \vee x > 0 \hfill \\   - 2 \leqslant x < 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 2 \leqslant x <  - \frac{3}{2}

    Vậy BPT có tập nghiệm là  S = \left[ { - 2; - \frac{3}{2}} ight).

  • Câu 14: Vận dụng cao
    Tìm tập nghiệm của BPT mũ

    Bất phương trình {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}} có tập nghiệm là:

    Hướng dẫn:

    Ta có:  {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}}

    \Leftrightarrow {\left( {\frac{5}{3}} ight)^{2\left( { - {x^2} + 2x + 1} ight)}} + 1 \geqslant \frac{{34}}{{15}}.{\left( {\frac{5}{3}} ight)^{\left( { - {x^2} + 2x + 1} ight)}}

    \Leftrightarrow \left[ \begin{gathered}  0 \leqslant x \leqslant 2 \hfill \\  x \leqslant 1 - \sqrt 3  \hfill \\  x \geqslant 1 + \sqrt 3  \hfill \\ \end{gathered}  ight.

    Vậy S = \left( { - \infty ;1 - \sqrt 3 } ight] \cup \left[ {0;2} ight] \cup \left[ {1 + \sqrt 3 ; + \infty } ight).

  • Câu 15: Thông hiểu
    Nghiệm nguyên nhỏ nhất

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 là:

    x=4 || 4 || X=4 || bốn || Bốn

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 là:

    x=4 || 4 || X=4 || bốn || Bốn

     Điều kiện: x > 2

    {\log _{0,2}}x - {\log _5}\left( {x - 2} ight) < {\log _{0,2}}3 \Leftrightarrow {\log _{0,2}}\left[ {x\left( {x - 2} ight)} ight] < {\log _{0,2}}3

    \Leftrightarrow {x^2} - 2x - 3 > 0 \Leftrightarrow \left[ \begin{gathered}  x <  - 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

    So điều kiện suy ra x > 3

  • Câu 16: Vận dụng
    Giải BPT

    Tập nghiệm của bất phương trình {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > 0 là:

    Hướng dẫn:

     Điều kiện: \left\{ \begin{gathered}  2x - 1 > 0 \hfill \\  {\log _2}(2x - 1) > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1.

    Ta có: {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > 0 \Leftrightarrow {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > {\log _{\frac{1}{2}}}1

    \Leftrightarrow \left\{ \begin{gathered}  {\log _2}(2x - 1) < 1 \hfill \\  {\log _2}(2x - 1) > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  0 < 2x - 1 < 2 \hfill \\  2x - 1 > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow 1 < x < \frac{3}{2} (thỏa mãn điều kiện)

    Vậy tập nghiệm của bất phương trình đã cho là  S = \left( {1;\frac{3}{2}} ight).

  • Câu 17: Vận dụng cao
    Tìm tất cả các giá trị thực của tham số m

    Tìm tất cả các giá trị thực của tham số m để bất phương trình 1 + {\log _5}\left( {{x^2} + 1} ight) \geqslant {\log _5}\left( {m{x^2} + 4x + m} ight) có nghiệm đúng \forall x.

    Hướng dẫn:

    Bất phương trình tương đương 7\left( {{x^2} + 1} ight) \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {5 - m} ight){x^2} - 4x + 5 - m \geqslant 0{} \hfill \\  m{x^2} + 4x + m > 0{} \hfill \\ \end{gathered}  ight.(*),{\text{ }}\forall x \in \mathbb{R}.

    m=0 hoặc m=5: (*) không thỏa \forall x \in \mathbb{R}

    m eq 0m eq 5: (*) \Leftrightarrow \left\{ \begin{gathered}  5 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {5 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }} \Leftrightarrow {\text{  }}2 < m \leqslant 3.

  • Câu 18: Thông hiểu
    BPT trở thành

    Nếu đặt t = {\log _3}\frac{{x - 1}}{{x + 1}} thì bất phương trình {\log _4}{\log _3}\frac{{x - 1}}{{x + 1}} < {\log _{\frac{1}{4}}}{\log _{\frac{1}{3}}}\frac{{x + 1}}{{x - 1}} trở thành bất phương trình nào?

    Hướng dẫn:

    Điều kiện: x \in ( - \infty ; - 1) \cup (1; + \infty )

    Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình  {\log _3}\frac{{x - 1}}{{x + 1}} - \frac{1}{{{{\log }_3}\frac{{x - 1}}{{x + 1}}}} < 0

    Vậy BPT trở thành: \frac{{{t^2} - 1}}{t} < 0

  • Câu 19: Nhận biết
    Tìm tập nghiệm của BPT logarit

    Bất phương trình \log _{0,2}^2x - 5{\log _{0,2}}x <  - 6 có tập nghiệm là:

    Hướng dẫn:

    Điều kiện: x>0

    Ta có:

    \log _{0,2}^2 - 5{\log _{0,2}}x <  - 6 \Leftrightarrow 2 < {\log _{0,2}}x < 3 \Leftrightarrow \frac{1}{{125}} < x < \frac{1}{{25}}

    Vậy BPT đã cho có tập nghiệm là S = \left( {\frac{1}{{125}};\frac{1}{{25}}} ight).

  • Câu 20: Vận dụng
    Tìm tập nghiệm của BPT mũ

    Tìm tập nghiệm của bất phương trình {11^{\sqrt {x + 6} }} \geqslant {11^x} sau: 

    Hướng dẫn:

    Ta có:  {11^{\sqrt {x + 6} }} \geqslant {11^x} \Leftrightarrow \sqrt {x + 6}  \geqslant x

    \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x < 0 \hfill \\  x + 6 \geqslant 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\  x + 6 \geqslant {x^2} \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}   - 6 \leqslant x < 0 \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\   - 2 \leqslant x \leqslant 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow  - 6 \leqslant x \leqslant 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 4 lượt xem
Sắp xếp theo