Luyện tập Số phức (Khó)

Hãy cùng Luyện tập củng cố các vấn đề Tổng quan về số phức ngay các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Phương trình biểu diễn các số phức z

    Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn các số phức z thỏa mãn điều kiện \left| {zi - \left( {2 + i} ight)} ight| = 2 là:

    Hướng dẫn:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {zi - \left( {2 + i} ight)} ight| = 2

    \Leftrightarrow \left| {xi - y - 2 - i} ight| = 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {\left( {y + 2} ight)^2} = 4

  • Câu 2: Nhận biết
    Tìm số phức thỏa mãn điều kiện

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 3: Vận dụng cao
    Tìm giá trị lớn nhất của đoạn thẳng MN

    Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi,\left( {x,y \in \mathbb{R}} ight)

    thỏa mãn \left| z ight| = 1 và N là điểm biểu diễn số phức {z_0} = 5 + 3i. M là một điểm thuộc (C)

    sao cho MN có độ dài lớn nhất. Khi đó độ dài MN lớn nhất bằng

    Hướng dẫn:

    Ta có: M(x; y) nằm trên đường tròn (C): {\left( {x - 1} ight)^2} + {y^2} = 1. Tâm i(1; 0)

    Do N(5; 3) nằm ngoài (C)  nên MN có độ dài lớn nhất khi MN = NI + R = 5 + 1 = 6

  • Câu 4: Nhận biết
    Số phức có phần thực bằng

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi

    (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 5: Vận dụng cao
    Tính môđun của số phức Z

    Tính môđun của số phức z thỏa mãn 3z.\overline z  + 2023(z + \overline z ) = 48 - 2022i

    Hướng dẫn:

     - Đặt z = a + bi{\text{ }}(a,b \in \mathbb{R}); \Rightarrow \overline z  = a - b

    - Ta có: 3z.\overline z  + 2023(z + \overline z ) = 48 - 2022i

    \Leftrightarrow 3({a^2} + {b^2}) + 4046b.i = 48 - 2022i \Rightarrow {a^2} + {b^2} = 16

    - Vậy \left| z ight| = \sqrt {{a^2} + {b^2}}  = 4

  • Câu 6: Vận dụng cao
    Tính giá trị nhỏ nhất của mođun số phức

    Cho hai số phức {z_1},{z_2} thỏa mãn \left| {{z_1} + 1 - i} ight| = 2{z_2} = i{z_1}.

    Tìm giá trị nhỏ nhất m của biểu thức \left| {{z_1} - {z_2}} ight|?

    Hướng dẫn:

    \left| {{z_1} + 1 - i} ight| = 2 nên điểm biểu diễn {M_1} của {z_1} thuộc đường tròn tâm I(-1; 1) bán kính R = 2

    {z_2} = i{z_1} nên điểm {M_2} (điểm biểu diễn của {z_2}) là ảnh của {M_1} qua phép quay tâm O, góc quay {90^0}

    => \left| {{z_1} - {z_2}} ight| = {M_1}{M_2} = \sqrt 2 O{M_1} ngắn nhất khi O{M_1} ngắn nhất

    Ta có: \min O{M_1} = R - OI = 2 - \sqrt 2

    Vậy: m = \sqrt 2 \left( {2 - \sqrt 2 } ight) = 2\sqrt 2  - 2

    Do \left| {{z_1} + 1 - i} ight| = 2 nên điểm biểu diễn của thuộc đường tròn tâm I\left( { - 1;1} ight) bán kính R  = 2.

    \left| {{z_1} - {z_2}} ight| = \left| {{z_1} - i{z_1}} ight| = \left| {\left( {1 - i} ight){z_1}} ight| = \sqrt 2 \left| {{z_1}} ight| = \sqrt 2 OM \geqslant \sqrt 2 \left( {R - OI} ight) = \sqrt 2 \left( {2 - \sqrt 2 } ight) = 2\sqrt 2  - 2

  • Câu 7: Vận dụng cao
    Tính giá trị nhỏ nhất của modun số phức

    Cho hai số phức {z_1};{z_2} thỏa mãn \left| {{z_1} + 5} ight| = 5\,;\,\left| {{z_2} + 1 - 3i} ight| = \left| {{z_2} - 3 - 6i} ight|. Tìm giá trị nhỏ nhất của \left| {{z_1} - {z_2}} ight|.

    Hướng dẫn:

    Gọi {z_1} = {a_1} + {b_1}i,\,\,\,{z_2} = {a_2} + {b_2}i\,\,\,({a_1},{b_1},{a_2},{b_2} \in \mathbb{R})

    Khi đó \left| {{z_1} + 5} ight| = 5 \Leftrightarrow {\left( {{a_1} + 5} ight)^2} + {b_1}^2 = 25

    Tập hợp điểm biểu diễn {z_1} là đường tròn tâm I\left( { - 5;0} ight);R = 5

    Cũng theo giả thiết, ta có:

    \begin{matrix}  \left| {{z_2} + 1 - 3i} ight| = \left| {{z_2} - 3 - 6i} ight| \hfill \\   \Leftrightarrow {\left( {{a_2} + 1} ight)^2} + {\left( {{b_2} - 3} ight)^2} = {\left( {{a_2} - 3} ight)^2} + {\left( {{b_2} - 6} ight)^2} \hfill \\   \Rightarrow 8{a_2} + 6{b_2} - 35 = 0. \hfill \\ \end{matrix}

    Tập hợp điểm biểu diễn {z_2} là đường thẳng \Delta :\,\,8x + 6y - 35 = 0

    d(I,\Delta ) = \frac{{\left| { - 5.8 - 35} ight|}}{{\sqrt {{8^2} + {6^2}} }} = \frac{{15}}{2} \Rightarrow d\left( {I,\Delta } ight) > R

    \Rightarrow \min \left| {{z_1} - {z_2}} ight| = d\left( {I,\Delta } ight) - R = \frac{5}{2}

  • Câu 8: Thông hiểu
    Tìm phần thực và phần ảo của số phức

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi, kết hợp với công thức số phức liên hợp \overline z  = \overline {a + bi}  = a - bi

    Hướng dẫn:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 9: Thông hiểu
    Tính mô đun số phức

    Cho số phức z = 2 + i. Tính |z|

    Gợi ý:

     Áp dụng công thức mô đun số phức, cho z = a + bi thì |z|=\sqrt {{a^2} + {b^2}}

    Hướng dẫn:

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 10: Nhận biết
    Số phức 5 + 6i có phần thực bằng

    Số phức 5 + 6i có phần thực bằng 

    Gợi ý:

    Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 11: Vận dụng cao
    Xác định tọa độ điểm M thỏa mãn điều kiện

    Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi,(x,y \in \mathbb{R})

    thỏa mãn \left| z ight| = 1 và N là điểm biểu diễn số phức {z_0} = 1 - i. Tìm điểm thuộc (C) sao

    cho có độ dài lớn nhất.

    Hướng dẫn:

     Ta có: M\left( {x;y} ight) nằm trên đường tròn (C): {\left( {x - 1} ight)^2} + {y^2} = 1 . Tâm I(1; 0)

    Do N\left( {1; - 1} ight) \in \left( C ight) nên có độ dài lớn nhất khi MN là đường kính, hay I(1; 0) là trung điểm của MN. Vậy M(1; 1)

    Nhận xét: đây là bài toán tọa độ lớp , khi cho một đường tròn (C) và một điểm N. Tìm điểm M trên (C) sao cho đạt min, max.

  • Câu 12: Nhận biết
    Phần thực và phần ảo của số phức liên hợp của số phức

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

    Gợi ý:

     Áp dụng áp dụng định nghĩa số phức có dạng z = a + bi (trong đó a, b là các số thực và số i thoả mãn i2 = -1).

    Hướng dẫn:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 13: Vận dụng
    Điểm biểu diễn số phức z

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Trong mặt phẳng Oxy, gọi các điểm M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2}, gọi G là trọng tâm của tam giác OMN, với O là gốc tọa độ. Hỏi G là điểm biểu diễn của số phức nào sau đây?

    Hướng dẫn:

    Do M, N lần lượt là điểm biểu diễn số phức {z_1},{z_2} nên M\left( {1; - 1} ight),N\left( {3;2} ight)

    Khi đó tọa độ điểm G là trọng tâm của tam giác OMN có tọa độ G\left( {\frac{4}{3};\frac{1}{3}} ight)

    Vậy G là điểm biểu diễn của số phức: z = \frac{4}{3} + \frac{1}{3}i

  • Câu 14: Thông hiểu
    Phần thực và phần ảo của số phức

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

    Hướng dẫn:

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 15: Nhận biết
    Số phức liên hợp của số phức

    Số phức liên hợp của số phức 5 - 3i là

    Gợi ý:

     Cho số phức z = a + bi. Số phức \overline z = a – bi gọi là số phức liên hợp với số phức trên hay \overline z = \overline {a + bi} = a - bi

    Hướng dẫn:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 16: Thông hiểu
    Tìm phần thực và phần ảo của số phức

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

    Hướng dẫn:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 17: Vận dụng
    Biểu diễn số phức z

    Cho số phức z thỏa mãn \left( {1 + 3i} ight)z + 2i =  - 4. Điểm nào sau đây là điểm biểu diễn của z trong các điểm M, N, P, Q ở hình bên?

    Hướng dẫn:

    Ta có: \left( {1 + 3i} ight)z + 2i =  - 4 \Leftrightarrow z = \frac{{ - 4 - 2i}}{{1 + 3i}} =  - 1 + i

  • Câu 18: Thông hiểu
    Tính giá trị x và y thỏa mãn điều kiện

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

    Hướng dẫn:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 19: Vận dụng
    Phương trình đường thẳng biểu diễn các số phức

    Phương trình của tập hợp các điểm biểu diễn số phức z thỏa mãn \left| {z + i} ight| = \left| {\overline z  + 1} ight| là?

    Hướng dẫn:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight)

    Theo bài ra ta có: \left| {z + i} ight| = \left| {\overline z  + 1} ight|

    \Leftrightarrow \left| {x + \left( {y + 1} ight)i} ight| = \left| {\left( {x + 1} ight) - yi} ight|

    \Leftrightarrow {x^2} + {\left( {y + 1} ight)^2} = {\left( {x + 1} ight)^2} + {\left( { - y} ight)^2}

    \Leftrightarrow 2x - 2y = 0

    \Leftrightarrow x - y = 0

  • Câu 20: Vận dụng cao
    Điều kiện để đoạn thẳng MN đạt min

    Gọi (C) là tập hợp các điểm trên mặt phẳng biểu diễn số phức z = x - 1 + yi;\left( {x,y \in \mathbb{R}} ight)

    thỏa mãn \left| z ight| = 1 và N là điểm biểu diễn số phức {z_0} = 5 + 3i. M là một điểm thuộc (C)

    sao cho MN có độ dài bé nhất. Khi đó độ dài MN bé nhất bằng

    Hướng dẫn:

    Ta có: M(x; y) nằm trên đường tròn (C). Tâm I(1; 0)

    Do N(5, 3) nằm ngoài (C) nên MN có độ dài bé nhất khi MN = NI - R = 5 - 1 = 4

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (30%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 1 lượt xem
Sắp xếp theo