Luyện tập Phép chia số phức (Dễ)

Hãy cùng Luyện tập củng cố các phép tính với số phức các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính giá trị biểu thức

    Cho số phức z = a + bi , \left( {a,b \in \mathbb{R}} ight)thỏa mãn \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9\left| {\overline z } ight| > 2.

    Tính P = a + b.

    Hướng dẫn:

     Ta áp dụng công thức z = a + bi \Rightarrow \overline z  = a - bi, có:

    \left( {z + 1 + i} ight)\left( {\overline z  - i} ight) + 3i = 9

    \Leftrightarrow \left( {a + bi + 1 + i} ight)\left( {a - bi - i} ight) + 3i = 9

    \Leftrightarrow {a^2} + {b^2} + 2b + a + 1 - \left( {b + 1} ight)i = 9 - 3i

    Ta xét: \left\{ \begin{gathered}  {a^2} + {b^2} + 2b + a + 1 = 9 \hfill \\  b + 1 = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  {a^2} + a = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  b = 2 \hfill \\  a = 0 \hfill \\ \end{gathered}  ight. \vee \left\{ \begin{gathered}  b = 2 \hfill \\  a =  - 1 \hfill \\ \end{gathered}  ight.

    Với {z_1} = 2i \Rightarrow \left| {{z_1}} ight| = 2 nên không thỏa yêu cầu bài toán.

    Với {z_2} =  - 1 + 2i \Rightarrow \left| {{z_2}} ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5 thỏa yêu cầu bài toán.

    Vậy P = a + b = 1

  • Câu 2: Nhận biết
    Tính chia

    Cho z_1 =2-iz_2 = 5+6i. Tính T = z_1 : z_2?

    Hướng dẫn:

     Ta có z_1 =2-iz_2 = 5+6i. Tính:

     z_1 : z_2 = \frac {2-i}{5+6i}=\frac {(2-i)(5-6i)}{(5+6i)(5-6i)}=\frac{4}{61} - \frac{17}{61}i

  • Câu 3: Thông hiểu
    Tính môđun

    Cho số phức z thỏa mãn \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}}. Môđun của số phức \overline z  + iz là:

    Hướng dẫn:

     Ta có: \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}} = 4 - 4i\, \to \,\left| {\overline z  + iz} ight| = 0

  • Câu 4: Thông hiểu
    Tìm số phức z

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

    Hướng dẫn:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 5: Vận dụng
    Tìm m thỏa mãn phép chia số phức

    Cho số phức z thoả mãn \frac{1+i}{z} là số thực và |z-2|=m với m∈\mathbb{R}. Gọi m_0 là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó:

    Hướng dẫn:

    Giả sử z=a+bi,(a,b∈ \mathbb R)..

    Đặt: w=\frac{1+i}{z}=\frac{1+i}{a+bi}

    =\frac{1}{a^2+b^2}[a+b+(a-b)i]=\frac{a+b}{a^2+b^2 }+\frac{a-b}{a^2+b^2 } i.

    w là số thực nên: a=b(1).

    Mặt khác:  |a-2+bi|=m⇔(a-2)^2+b^2=m^2

    Thay (1) vào (2) được: (a-2)^2+a^2=m^2⇔2a^2-4a+4-m^2=0

    Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất a. \Leftrightarrow \Delta '=0 \Leftrightarrow 4-2(4-m^2 )=0 \Leftrightarrow m^2=2 \Leftrightarrow m= \sqrt 2 \in (1;\frac {3}{2})

    (Vì m là mô-đun).

  • Câu 6: Vận dụng
    Có bao nhiêu giá trị

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Đáp án là:

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Ta có: z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m} = {(2i)^m} = {2^m}.{i^m}\,

    z là số thuần ảo khi và chỉ khi m = 2k + 1,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 7: Nhận biết
    Tìm phần thực và phần ảo

    Phần thực, phần ảo của số phức z thỏa mãn \overline z  = \frac{5}{{1 - 2i}} - 3i lần lượt là?

    Hướng dẫn:

    Ta có:

    \overline z  = \frac{5}{{1 - 2i}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{{\left( {1 - 2i} ight)\left( {1 + 2i} ight)}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{5} - 3i = 1 - i

    \Rightarrow z = 1 + i

    Phần thực, phần ảo của z lần lượt là 1;1.

  • Câu 8: Vận dụng
    Tính bán kính đường tròn

    Xét các số phức z thỏa mãn \left| z ight| = \sqrt 2. Trên mặt phẳng tọa độ Oxy, tập hợp điểm biểu diễn của các số phức w = \frac{{4 + iz}}{{1 + z}} là một đường tròn có bán kính bằng

    Hướng dẫn:

    Ta có

    w=\frac{4+i z}{1+z} \Rightarrow \mathrm{w}(1+z)=4+i z \Leftrightarrow z(\mathrm{w}-i)=4-\mathrm{w} \Rightarrow \sqrt{2}|\mathrm{w}-i|=|4-\mathrm{w}|

    Đặt \mathrm{w}=x+y i(x, y \in \mathbb{R})

    Ta có

    \sqrt{2} . \sqrt{x^2+(y-1)^2}=\sqrt{(x-4)^2+y^2}

    \Leftrightarrow 2\left(x^2+y^2-2 y+1ight)=x^2-8 x+16+y^2

    \Leftrightarrow x^2+y^2+8 x-4 y-14=0 \Leftrightarrow(x+4)^2+(y-2)^2=34

  • Câu 9: Nhận biết
    Khẳng định đúng?

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

    Hướng dẫn:

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

  • Câu 10: Nhận biết
    Tính giá trị biểu thức

    Giá trị của z = 1 + i + {i^2} + ... + {i^{2023}} là?

    Hướng dẫn:

    Ta có: z = \frac{{{i^{2022}} - 1}}{{i - 1}} = 1 + i

    (Áp dụng công thức: {S_n} = 1 + p + {p^2} + ... + {p^n} = \frac{{{p^{n - 1}} - 1}}{{p - 1}})

  • Câu 11: Nhận biết
    Tìm phần thực?

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 12: Vận dụng
    Xác định tham số m thỏa mãn điều kiện

    Cho hai số phức z, w thỏa mãn \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|; w = z + m + i với m \in \mathbb{R} là tham số. Giá trị của m để ta luôn có \left| w ight| \geqslant 2\sqrt 5 là:

    Hướng dẫn:

     Đặt z = a + ib,\left( {a,b \in \mathbb{R}} ight) có biểu diễn hình học là điểm M\left( {x;y} ight)

    Ta có:

    \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|

    \Leftrightarrow \left| {x - 1 + iy} ight| = \left| {x + 3 + \left( {y - 2} ight)i} ight|

    \Leftrightarrow \sqrt {{{\left( {x - 1} ight)}^2} + {y^2}}  = \sqrt {{{\left( {x + 3} ight)}^2} + {{\left( {y - 2} ight)}^2}}

    \Leftrightarrow  - 2x + 1 = 6x + 9 - 4y + 4 \Leftrightarrow 2x - y + 3 = 0

    Suy ra biểu diễn của số phức là đường thẳng \Delta :2x - y + 3 = 0

    Ta xét: \left| \omega  ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {z + m + i} ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {x + m +  + \left( {y + 1} ight)i} ight| \geqslant 2\sqrt 5

    với I\left( { - m; - 1} ight).

    Mà ta có MI \geqslant d\left( {I,\Delta } ight)

    Nên MI \geqslant 2\sqrt 5  \Leftrightarrow d\left( {I,\Delta } ight) \geqslant 2\sqrt 5  \Leftrightarrow \frac{{\left| { - 2m + 4} ight|}}{{\sqrt 5 }} \geqslant 2\sqrt 5  \Leftrightarrow \left| { - 2m + 4} ight| \geqslant 10

    \Leftrightarrow \left[ \begin{gathered}   - 2m + 4 \geqslant 10 \hfill \\   - 2m + 4 \leqslant  - 10 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m \leqslant  - 3 \hfill \\  m \geqslant 7 \hfill \\ \end{gathered}  ight.

  • Câu 13: Thông hiểu
    Tìm phần ảo và phần thực

    Tìm phần thực, phần ảo của số phức z thỏa mãn \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}}

    Hướng dẫn:

     Ta có: \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}} \Leftrightarrow \frac{z}{2} - i = \frac{{{{(1 + i)}^{3980}}}}{2}

    \Leftrightarrow \frac{z}{2} - i = {2^{1989}}.{i^{1990}} \Leftrightarrow z =  - {2^{1990}} + 2i

     Vậy số phức có phần thực là -2^{1990} và phần ảo là 2.

  • Câu 14: Vận dụng
    Có bao nhiêu tham số m thảo mãn?

    Cho số phức z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;100} ight] để z là số thực?

    Hướng dẫn:

    Ta có: z = {\left( {\frac{{4i}}{{i + 1}}} ight)^m} = {(8i)^{\frac{m}{2}}} = {8^{\frac{m}{2}}}.{i^{\frac{m}{2}}}

    z là số thực khi và chỉ khi \frac{m}{2} = 2k \Leftrightarrow m = 4k,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 15: Nhận biết
    Mô đun số phức

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

    Hướng dẫn:

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 16: Thông hiểu
    Tính môđun?

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Đáp án là:

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Ta có: \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i  \Leftrightarrow \left( {2 + i} ight)z + \frac{{{{\left( {1 - i} ight)}^2}}}{{\left( {1 + i} ight)\left( {1 - i} ight)}} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z + \frac{{ - 2i}}{2} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z = 5 \Leftrightarrow z = \frac{5}{{2 + i}} = 2 - i

    \Rightarrow w = 1 + 2z + {z^2} = {\left( {1 + z} ight)^2} = {\left( {3 - i} ight)^2} = 8 - 6i

    \Leftrightarrow \left| w ight| = \sqrt {{8^2} + {{\left( { - 6} ight)}^2}}  = 10

  • Câu 17: Vận dụng
    Tính giá trị biểu thức A

    Cho biểu thức A = 1 + {z^3} + {z^6} + ... + {z^{2016}} với z = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\,. Biểu thức A có giá tri là? 

    1 || Một || một

    Đáp án là:

    Cho biểu thức A = 1 + {z^3} + {z^6} + ... + {z^{2016}} với z = \frac{1}{2} - \frac{{\sqrt 3 }}{2}i\,. Biểu thức A có giá tri là? 

    1 || Một || một

     Ta có L = \frac{{1 - {{({z^3})}^{673}}}}{{1 - {z^3}}} = \frac{{1 - {{( - 1)}^{673}}}}{{1 - ( - 1)}} = 1

  • Câu 18: Thông hiểu
    Tìm số phức?

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

    Hướng dẫn:

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 19: Vận dụng
    Tính giá trị biểu thức M

    Cho biểu thức M = 1 - z + {z^2} - {z^3} + ... + {z^{2016}} - {z^{2017}} với z = \frac{{1 + 2i}}{{2 - i}}. Biểu thức M có giá tri là?

    Hướng dẫn:

    Ta có: z = \frac{{1 + 2i}}{{2 - i}} = i.

    Khi đó:  M = \frac{{1 - {{( - z)}^{2018}}}}{{1 + z}} = \frac{{1 - {z^{2018}}}}{{1 + z}}

    = \frac{{1 - {z^{2018}}}}{{1 + z}} = \frac{{1 - {i^{2018}}}}{{1 + i}} = 1 - i.

  • Câu 20: Thông hiểu
    Có bao nhiêu số phức z?

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Hướng dẫn:

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 1 lượt xem
1 Bình luận
Sắp xếp theo
  • Ngô Thu Hương
    Ngô Thu Hương

    Bài luyện tập này hay đó

    Thích Phản hồi 03/12/22