Luyện tập Tích phân (Trung bình)

Hãy cùng Luyện tập củng cố các bài tập Trắc nghiệm Tích phân các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính tích phân I

    Tích phân I = \int\limits_{ - 1}^{\frac{1}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx} có giá trị là:

    Hướng dẫn:

    Ta có: \left( {5 + 4x - {x^2}} ight)' = 4 - 2x và  4x - 3 = 5 - 2\left( {4 - 2x} ight)

    I = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{4x - 3}}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  - \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Xét {I_1} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {5 + 4x - {x^2}} }}dx}  = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{5}{{\sqrt {9 - {{\left( {x - 2} ight)}^2}} }}dx}

    Đặt x - 2 = 3\sin t,t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight] \Rightarrow dx = 3\cos tdt

    Đổi cận \left\{ \begin{gathered}  x = \frac{7}{2} \Rightarrow t = \frac{\pi }{6} \hfill \\  x = \frac{1}{2} \Rightarrow t =  - \frac{\pi }{6} \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \int\limits_{ - \frac{\pi }{6}}^{\frac{\pi }{6}} {\frac{{5.3\cos t}}{{\sqrt {9 - 9{{\sin }^2}t} }}dt}  = \frac{{5\pi }}{3}

    Xét {I_2} = \int\limits_{\frac{1}{2}}^{\frac{7}{2}} {\frac{{2\left( {4 - 2x} ight)}}{{\sqrt {5 + 4x - {x^2}} }}dx}

    Đặt t = 5 + 4x - {x^2} \Rightarrow dt = 4 - 2x

    Đổi cận \left\{ \begin{gathered}  x = \frac{1}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\  x = \frac{7}{2} \Rightarrow t = \frac{{27}}{4} \hfill \\ \end{gathered}  ight. \Rightarrow {I_2} = 0

    \Rightarrow I = \frac{{5\pi }}{3}

  • Câu 2: Nhận biết
    Tìm giá trị của tích phân I

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    Gợi ý:

     Áp dụng công thức tích phân của hàm sin (x).

    Hướng dẫn:

    Tích phân I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx} có giá trị là:

    I = \int\limits_0^{\dfrac{\pi }{2}} {\sin xdx}  = \left. {\left( { - \cos x} ight)} ight|_0^{\dfrac{\pi }{2}} = 1

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 3: Vận dụng cao
    Tính tích phân lượng giác

    Tích phân I = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{\cos x - \sin x}}{{\left( {{e^x}\cos x + 1} ight)\cos x}}dx} có giá trị là:

    Hướng dẫn:

    Ta biến đổi: I = \int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\frac{{{e^x}.\left( {\cos x - \sin x} ight)}}{{\left( {{e^x}\cos x + 1} ight){e^x}\cos x}}dx}

    Đặt t = {e^x}\cos x \Rightarrow dt = {e^x}\left( {\cos x - \sin x} ight)dx

    Đổi cận \left\{ \begin{gathered}  x = \frac{\pi }{3} \Rightarrow t = \frac{1}{2}{e^{\frac{\pi }{3}}} \hfill \\  x = \frac{{2\pi }}{3} \Rightarrow t =  - \frac{1}{2}{e^{\frac{{2\pi }}{3}}} \hfill \\ \end{gathered}  ight.

    I = \int\limits_{\frac{1}{2}{e^{\frac{\pi }{3}}}}^{ - \frac{1}{2}{e^{\frac{{2\pi }}{3}}}} {\frac{1}{{t\left( {t + 1} ight)}}dt}  = \left. {\left( {\ln \left| {\frac{t}{{t + 1}}} ight|} ight)} ight|_{\frac{1}{2}{e^{\frac{\pi }{3}}}}^{ - \frac{1}{2}{e^{\frac{{2\pi }}{3}}}}

    = \ln \left| {\frac{{{e^{\frac{{2\pi }}{3}}}}}{{{e^{\frac{{2\pi }}{3}}} - 2}}} ight| - \ln \left| {\frac{{{e^{\frac{\pi }{3}}}}}{{{e^{\frac{\pi }{3}}} + 2}}} ight| = \ln \left| {\frac{{{e^{\frac{\pi }{3}}}\left( {{e^{\frac{\pi }{3}}} + 2} ight)}}{{{e^{\frac{{2\pi }}{3}}} - 2}}} ight|

  • Câu 4: Thông hiểu
    Thực hiện tính tích phân chứa tham số

    Tích phân I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx} có giá trị là:

    I = \int\limits_0^1 {\left( {\frac{{ax}}{{x + 1}} - 2ax} ight)dx}  = a\int\limits_0^1 {\frac{x}{{x + 1}}dx - 2a\int\limits_0^1 {xdx} }

    = a\left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 - a\left. {\left( {{x^2}} ight)} ight|_0^1 = a\left( {1 - \ln 2} ight) - a =  - a\ln 2

  • Câu 5: Nhận biết
    Thực hiện tính tích phân I 

    Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx}  = \left. {\left( { - \frac{1}{x} + {x^2}} ight)} ight|_1^2 = \frac{7}{2}

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 6: Vận dụng cao
    Tính tích phân I

    Tích phân I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\left( {{x^3} + 2x} ight)\cos x + x{{\cos }^2}x}}{{\cos x}}dx} có giá trị là:

    Hướng dẫn:

    Ta có: 

    I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\frac{{\left( {{x^3} + 2x} ight)\cos x + x{{\cos }^2}x}}{{\cos x}}dx}  = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\left( {{x^3} + 2x} ight)dx}  + \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos xdx}

    = \left. {\left( {\frac{1}{4}{x^4} + {x^2}} ight)} ight|_{\frac{\pi }{6}}^{\frac{\pi }{2}} + \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos xdx}

    Xét {I_1} = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos xdx}

    Đặt \left\{ \begin{gathered}  u = x \hfill \\  dv = \cos xdx \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  du = dx \hfill \\  v = \sin x \hfill \\ \end{gathered}  ight.

    \Rightarrow {I_1} = \left. {\left( {x\sin x} ight)} ight|_{\frac{\pi }{6}}^{\frac{\pi }{2}} - \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin xdx}  = \frac{\pi }{4} - \frac{{\sqrt 3 }}{2}

    \Rightarrow I = \left. {\left( {\frac{1}{4}{x^4} + {x^2}} ight)} ight|_{\frac{\pi }{6}}^{\frac{\pi }{2}} + {I_1} = \frac{{5{\pi ^4}}}{{324}} + \frac{{2{\pi ^2}}}{9} + \frac{\pi }{4} - \frac{{\sqrt 3 }}{2}

  • Câu 7: Vận dụng
    Tìm giá trị a thỏa mãn điều kiện

    Tích phân I = \int\limits_0^1 {\frac{{2ax}}{{x + 1}}dx}  = \ln 2. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int\limits_0^1 {\frac{{2ax}}{{x + 1}}dx}  = 2a\int\limits_0^1 {\left( {1 - \frac{1}{{x + 1}}} ight)dx}  = 2a\left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 = 2a\left( {1 - \ln 2} ight)

    I = \ln 2 \Leftrightarrow 2a\left( {1 - \ln 2} ight) = \ln 2 \Leftrightarrow a = \frac{{\ln 2}}{{2 - 2\ln 2}}

  • Câu 8: Nhận biết
    Tìm tích phân

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} {\left( {\sin 2x - \cos 3x} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} {\left( {\sin 2x - \cos 3x} ight)dx} có giá trị là:

    I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} {\left( {\sin 2x - \cos 3x} ight)dx}  = \left. {\left( { - \frac{1}{2}\cos 2x - \frac{1}{3}\sin 3x} ight)} ight|_{ - \frac{\pi }{2}}^{\frac{\pi }{6}} =  - \frac{3}{4}

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 9: Thông hiểu
    Tính tích phân I

    Tích phân I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx có giá trị là:

    Hướng dẫn:

     \begin{matrix}  I = \int\limits_{ - 1}^0 {\left( {{x^3} + ax + 2} ight)} dx \hfill \\   = \left. {\left( {\dfrac{1}{4}{x^4} + \dfrac{a}{2}{x^2} + 2x} ight)} ight|_{ - 1}^0 \hfill \\   = \dfrac{7}{4} - \dfrac{a}{2} \hfill \\ \end{matrix}

  • Câu 10: Nhận biết
    Tính tích phân I

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx} có giá trị là:

    I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin x - \cos x} ight)dx}  = \left. {\left( { - \cos x - \sin x} ight)} ight|_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} =  - 2

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 11: Nhận biết
    Giá trị của tích phân

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức có giá trị P = 2a - 1 là:

    Gợi ý:

     Áp dụng công thức tích phân của hàm phân thức.

    Hướng dẫn:

    Giá trị của tích phân I = \int\limits_0^1 {\frac{x}{{x + 1}}} dx = a. Biểu thức P = 2a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_0^1 {\dfrac{x}{{x + 1}}} dx \hfill \\   = \int\limits_0^1 {\left( {1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\   = \left. {\left( {x - \ln \left| {x + 1} ight|} ight)} ight|_0^1 \hfill \\ = 1 - \ln 2 \hfill \\   \Rightarrow a = 1 - \ln 2 \hfill \\   \Rightarrow P = 2a - 1 = 1 - 2\ln 2 \hfill \\ \end{matrix}

     

  • Câu 12: Vận dụng
    Tính giá trị tích phân I

    Tích phân I = \int\limits_0^3 {\frac{1}{{\sqrt {{x^2} + 9} }}dx} có giá trị là:

    Hướng dẫn:

     Đặt u = x + \sqrt {{x^2} + 9}

    \Rightarrow du = \left( {1 + \frac{x}{{\sqrt {{x^2} + 9} }}} ight)dx = \frac{{x + \sqrt {{x^2} + 9} }}{{\sqrt {{x^2} + 9} }}dx = \frac{{udx}}{{\sqrt {{x^2} + 9} }} \Rightarrow \frac{{du}}{u} = \frac{{dx}}{{\sqrt {{x^2} + 9} }}

    Đổi cận \left\{ \begin{gathered}  x = 0 \Rightarrow u = 3 \hfill \\  x = 3 \Rightarrow u = 3 + 3\sqrt 2  \hfill \\ \end{gathered}  ight.

    \Rightarrow I = \int\limits_3^{3 + 3\sqrt 2 } {\frac{{du}}{u}}  = \left. {\left( {\ln \left| u ight|} ight)} ight|_3^{3 + 3\sqrt 2 } = \ln \left( {1 + \sqrt 2 } ight)

  • Câu 13: Thông hiểu
    Cho giá trị của tích phân

    Cho giá trị của tích phân {I_1} = \int\limits_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} {\left( {\sin 3x + \cos 3x} ight)dx}  = a, {I_2} = \int\limits_e^{2e} {\left( {\frac{1}{x} + \frac{1}{{{x^2}}} - \frac{1}{{x + 1}}} ight)dx}  = b. Giá trị a.b gần nhất với giá trị nào sau đây?

    Gợi ý:

     Áp dụng công thức nguyên hàm của hàm số lượng giác sin (x) và cos (x) và công thức nguyên hàm của phân thức. 

    Hướng dẫn:

     Ta có:

    {I_1} = \int\limits_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} {\left( {\sin 3x + \cos 3x} ight)dx}  = \left. {\left( { - \frac{1}{3}\cos 3x + \frac{1}{3}\sin 3x} ight)} ight|_{ - \frac{\pi }{3}}^{\frac{{2\pi }}{3}} =  - \frac{2}{3} \Rightarrow a =  - \frac{2}{3}

    \begin{matrix}  {I_2} = \int\limits_e^{2e} {\left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}} - \dfrac{1}{{x + 1}}} ight)dx}  = \left. {\left( {\ln \left| x ight| - \dfrac{1}{x} - \ln \left| {x + 1} ight|} ight)} ight|_e^{2e} \hfill \\ = \ln 2 - \dfrac{1}{{2e}} + \dfrac{1}{e} - \ln \left( {2e + 1} ight) + \ln \left( {e + 1} ight) \hfill \\   \Rightarrow b =  - \dfrac{1}{{2e}} + \dfrac{1}{e} + \ln 2 - \ln \left( {2e + 1} ight) + \ln \left( {e + 1} ight) \hfill \\ \end{matrix}

    \Rightarrow a.b \approx  - 0,2198

  • Câu 14: Vận dụng
    Tìm giá trị của a thỏa mãn điều kiện

    Tích phân I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3}. Giá trị của a là:

    Hướng dẫn:

    Ta có:

    I = \int\limits_1^2 {\frac{{ax + 1}}{{{x^2} + 3x + 2}}} dx = a\int\limits_1^2 {\frac{x}{{{x^2} + 3x + 2}}} dx + \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx

    Xét

    \begin{matrix}  {I_1} = a\int\limits_1^2 {\dfrac{x}{{{x^2} + 3x + 2}}} dx \hfill \\ = a\int\limits_1^2 {\left( {\dfrac{2}{{x + 2}} - \dfrac{1}{{x + 1}}} ight)} dx \hfill \\ = a\left. {\left( {2\ln \left| {x + 2} ight| - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\ = a\left( {2\ln 4 - 3\ln 3 + \ln 2} ight) \hfill \\ = 2a\ln \dfrac{4}{3} + a\ln \dfrac{2}{3} \hfill \\ \end{matrix}

    Xét {I_2} = \int\limits_1^2 {\frac{1}{{{x^2} + 3x + 2}}} dx = \left. {\left( {\ln \left| {x + 1} ight| - \ln \left| {x + 2} ight|} ight)} ight|_1^2 =  - \ln \frac{4}{3} - \ln \frac{2}{3}

    \Rightarrow I = {I_1} + I{}_2 = \left( {2a - 1} ight)\ln \frac{4}{3} + \left( {a - 1} ight)\ln \frac{2}{3}

    Theo đề bài: I = \frac{3}{5}\ln \frac{4}{3} + \frac{3}{5}\ln \frac{2}{3} \Rightarrow a = \frac{4}{5}

  • Câu 15: Thông hiểu
    Tính tích phân theo tham số a

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}, với a e 0 có giá trị là:

    Hướng dẫn:

     Ta có:

    \begin{matrix}  I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}  \hfill \\ = \left. {\left( { - \dfrac{1}{a}\cos ax + \dfrac{1}{a}\sin ax} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\ \end{matrix}

    \begin{matrix}= \left. {\left( {\dfrac{{\sqrt 2 }}{a}\sin \left( {ax - \dfrac{\pi }{4}} ight)} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\= \dfrac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\dfrac{\pi }{2} - \dfrac{\pi }{4}} ight) + \sin \left( {a\dfrac{\pi }{2} + \dfrac{\pi }{4}} ight)} ight] \hfill \\ \end{matrix}

     

  • Câu 16: Thông hiểu
    Giá trị của tích phân

    Giá trị của tích phân I = \int\limits_{ - 1}^0 {\frac{{{x^3} - 3{x^2} + 2}}{{{x^2} + x - 2}}dx} gần nhất với giá trị nào sau đây?

    Hướng dẫn:

     Ta có:

    \begin{matrix}  I = \int\limits_{ - 1}^0 {\dfrac{{{x^3} - 3{x^2} + 2}}{{{x^2} + x - 2}}dx}  \hfill \\  {\text{  }} = \int\limits_{ - 1}^0 {\dfrac{{\left( {x - 1} ight)\left( {{x^2} - 2x - 2} ight)}}{{\left( {x - 1} ight)\left( {x + 2} ight)}}dx}  \hfill \\ = \int\limits_{ - 1}^0 {\dfrac{{{x^2} - 2x - 2}}{{x + 2}}dx}  \hfill \\ = \int\limits_{ - 1}^0 {\left( {x - 4 + \dfrac{6}{{x + 2}}} ight)dx}  \hfill \\ = \left. {\left( {\dfrac{{{x^2}}}{2} - 4x + 6\ln \left| {x + 2} ight|} ight)} ight|_{ - 1}^0 \hfill \\ = 6\ln 2 - \dfrac{9}{2} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu
    Tính tích phân chứa tham số a

    Tích phân I = \int\limits_1^a {\left( {\frac{a}{x} + \frac{x}{a}} ight)dx}, với a e 0 có giá trị là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}  I = \int\limits_1^a {\left( {\dfrac{a}{x} + \dfrac{x}{a}} ight)dx}  = \left. {\left( {a\ln \left| x ight| + \dfrac{{{x^2}}}{{2a}}} ight)} ight|_1^a \hfill \\  = a\ln \left| a ight| + \dfrac{a}{2} - \dfrac{1}{{2a}} = a\ln \left| a ight| + \dfrac{{{a^2} - 1}}{{2a}} \hfill \\ \end{matrix}

  • Câu 18: Vận dụng
    Tính tích phân chứa tham số

    Tích phân I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx có giá trị là:

    Hướng dẫn:

    Ta có:

    I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx = \frac{a}{{\sqrt 3 }}\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 4} }}} dx

    Đặt u = x + \sqrt {{x^2} + 4}  \Rightarrow du = \frac{{x + \sqrt {{x^2} + 4} }}{{\sqrt {{x^2} + 4} }}dx \Rightarrow \frac{{du}}{u} = \frac{{dx}}{{\sqrt {{x^2} + 4} }}

    I = \frac{a}{{\sqrt 3 }}\int\limits_2^{1 + \sqrt 5 } {\frac{1}{u}du}  = \left. {\frac{a}{{\sqrt 3 }}\left( {\ln u} ight)} ight|_2^{1 + \sqrt 5 } = \frac{a}{{\sqrt 3 }}\ln \left| {\frac{{1 + \sqrt 5 }}{2}} ight|

  • Câu 19: Vận dụng
    Tìm giá trị nguyên của a thỏa mãn điều kiện

    Tích phân I = \int\limits_1^2 {\frac{{ax - 2}}{{\sqrt {a{x^2} - 4x} }}} dx = 2\sqrt 3  - 1. Giá trị nguyên của a là:

    Hướng dẫn:

    Ta có: \left( {a{x^2} - 4x} ight)' = 2ax - 4 = 2\left( {ax - 2} ight)

    \Rightarrow I = \frac{1}{2}\int\limits_1^2 {\frac{{2ax - 4}}{{\sqrt {a{x^2} - 4x} }}} dx

    Đặt t = a{x^2} - 4x \Rightarrow dt = \left( {2ax - 4} ight)dx

    Đổi cận \left\{ \begin{gathered}  x = 2 \Rightarrow t = 4a - 8 \hfill \\  x = 1 \Rightarrow t = a - 4 \hfill \\ \end{gathered}  ight.

    I = \frac{1}{2}\int\limits_{a - 4}^{4a - 8} {\frac{1}{{\sqrt t }}} dt = \left. {\left( {\sqrt t } ight)} ight|_{a - 4}^{4a - 8} = \sqrt {4a - 8}  - \sqrt {a - 4}

    Theo đề bài: 

    I = 2\sqrt 3  - 1 \Leftrightarrow \sqrt[{}]{{4a - 8}} - \sqrt {a - 4}  = 2\sqrt 3  - 1 \Leftrightarrow ..... \Leftrightarrow a = 5

  • Câu 20: Nhận biết
    Tính tích phân I

    Tích phân I = \int\limits_e^{{e^2}} {\frac{{x + 1}}{{{x^2}}}dx} có giá trị là:

    Hướng dẫn:

     Tích phân I = \int\limits_e^{{e^2}} {\frac{{x + 1}}{{{x^2}}}dx} có giá trị là:

    \begin{matrix}  I = \int\limits_e^{{e^2}} {\dfrac{{x + 1}}{{{x^2}}}dx}  \hfill \\   = \int\limits_e^{{e^2}} {\left( {\dfrac{1}{x} + \dfrac{1}{{{x^2}}}} ight)dx}  \hfill \\   = \left. {\left( {\ln \left| x ight| - \dfrac{1}{x}} ight)} ight|_e^{{e^2}} \hfill \\   = 1 + \dfrac{1}{e} - \dfrac{1}{{{e^2}}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (30%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 3 lượt xem
Sắp xếp theo