Đề khảo sát chất lượng Toán 11 CTST tháng 4

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 21 câu
  • Điểm số bài kiểm tra: 21 điểm
  • Thời gian làm bài: 90 phút
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
90:00
  • Câu 1: Nhận biết
    Chọn đáp án đúng

    Hàm số nào sau đây gián đoạn tại x = 1?

    Hướng dẫn:

    Xét hàm số y = \frac{x}{x^{2} -
1} hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

  • Câu 2: Nhận biết
    Xác định khẳng định đúng

    Chọn khẳng định đúng?

    Hướng dẫn:

    \lim_{x ightarrow - \infty}x^{4} = +
\infty

    \lim_{x ightarrow - \infty}x^{3} = -
\infty

    \lim_{x ightarrow x_{0}}x =
x_{0}

    \lim_{x ightarrow + \infty}q^{x} =
0;\left( |q| < 1 ight)

  • Câu 3: Nhận biết
    Tìm x để hàm số có nghĩa

    Tìm tập xác định của hàm số y = \log_{\sqrt{5}}\left( \frac{1}{6 - x}ight)?

    Hướng dẫn:

    Điều kiện xác định \frac{1}{6 - x} > 0
\Rightarrow 6 - x > 0 \Rightarrow x < 6

    Suy ra tập xác định của hàm số là: D = (
- \infty;6).

  • Câu 4: Thông hiểu
    Tìm mệnh đề sai

    Cho hàm số y =\log_{2}x. Tìm mệnh đề nào sai?

    Hướng dẫn:

    Mệnh đề sai là: “Tập xác định của hàm số là D = \mathbb{R}

    Sửa lại như sau: “Tập xác định của hàm số là D = (0; + \infty).

  • Câu 5: Thông hiểu
    Giải phương trình và tính tổng các nghiệm

    Tổng các nghiệm của phương trình \log_{4}x - \log_{2}3 = 1 bằng:

    Hướng dẫn:

    Điều kiện x eq 0

    Ta có:

    \log_{4}x - \log_{2}3 = 1 \Leftrightarrow\frac{1}{2}\log_{2}x^{2} = 1 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} = 2\log_{2}6\Leftrightarrow x^{2} = 6^{2}

    Khi đó tổng bình phương các nghiệm của phương trình bằng 0

  • Câu 6: Nhận biết
    Giải bất phương trình

    Tập nghiệm của bất phương trình \log_{3}\left( 18 - x^{2} ight) \geq 2 là:

    Hướng dẫn:

    Điều kiện: 18 - x^{2} > 0
\Leftrightarrow x \in \left( - 3\sqrt{2};3\sqrt{2}
ight)(*)

    Ta có:

    \log_{3}\left( 18 - x^{2} ight) \geq 2\Leftrightarrow 18 - x^{2} \geq 9 \Leftrightarrow - 3 \leq x \leq3

    Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: \lbrack -
3;3brack.

  • Câu 7: Nhận biết
    Chọn đáp án chính xác

    Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?

    Hướng dẫn:

    Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách

    Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách

    Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc

    Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách

    => Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.

  • Câu 8: Nhận biết
    Tính xác suất của biến cố

    Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là \frac{1}{2}\frac{1}{3}. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?

    Hướng dẫn:

    Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia

    Khi đó \overline{A} là biến cố cả hai xạ thủ đều bắn trúng bia.

    P\left( \overline{A} ight) =
\frac{1}{2}.\frac{1}{3} = \frac{1}{6} \Rightarrow P(A) = 1 - \frac{1}{6}
= \frac{5}{6}

  • Câu 9: Thông hiểu
    Xác định đạo hàm của hàm số

    Đạo hàm của hàm số y = \frac{x + 1}{\sqrt{x}} bằng biểu thức nào sau đây?

    Hướng dẫn:

    Ta có:y = \frac{x +
1}{\sqrt{x}}

    \Rightarrow y' = \frac{(x +
1)'.\sqrt{x} - \left( \sqrt{x} ight)'(x + 1)}{\left( \sqrt{x}
ight)^{2}}

    = \dfrac{\sqrt{x} - \dfrac{1}{2\sqrt{x}}(x+ 1)}{x} = \dfrac{\dfrac{2x - x - 1}{2\sqrt{x}}}{x} = \dfrac{x -1}{2x\sqrt{x}}

  • Câu 10: Nhận biết
    Chọn mệnh đề đúng

    Cho hình chóp S.ABCD đáy ABCD là hình thoi tâm I, cạnh bên SA vuông góc với đáy. Gọi H;K lần lượt là hình chiếu của A lên SC;SD. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
BD\bot AC \\
BD\bot SA;do\ SA\bot(ABCD) \\
\end{matrix} ight.\  \Rightarrow BD\bot(SAC)

  • Câu 11: Nhận biết
    Xác định mặt phẳng thỏa mãn yêu cầu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'. Mặt phẳng (BCD'A') vuông góc với mặt phẳng nào trong các mặt phẳng dưới đây?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: ABCD.A'B'C'D' là hình hộp chữ nhật suy ra \left\{ \begin{matrix}
BC\bot AB \\
BC\bot BB' \\
\end{matrix} ight.\  \Rightarrow BC\bot(ABB'A')

    \Rightarrow
(BCD'A')\bot(ABB'A')

  • Câu 12: Nhận biết
    Chọn khẳng định đúng

    Cho tứ diện ABCD. Gọi H là trực tâm tam giác BCDAH vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:

    AH\bot(BCD) \Rightarrow AH\bot
CD

    H là trực tâm tam giác BCD nên BH\bot
CD

    \left\{ \begin{matrix}
CD\bot AH \\
CD\bot BH \\
\end{matrix} ight.\  \Rightarrow CD\bot(ABH) \Rightarrow CD\bot
AB

  • Câu 13: Thông hiểu
    Phân tích sự đúng sai của các kết luận

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a;AD = 3a;SA\bot(ABCD);SA = 2a. Kẻ đường cao AI của tam giác SAB. Khi đó:

    a) BC\bot(SAB) Đúng||Sai

    b) \widehat{\left( SC;(ABCD) ight)}
\approx 30^{0} Sai||Đúng

    c) AI\bot CS Đúng||Sai

    d) Diện tích tam giác AIC bằng \frac{7a^{2}}{5}Sai||Đúng

    BC\bot(SAB) đúng

    \widehat{\left( SC;(ABCD) ight)}
\approx 32,3^{0} đúng

    AI\bot CS đúng

    Diện tích tam giác AIC bằng \frac{a^{2}\sqrt{46}}{5}

  • Câu 14: Thông hiểu
    Tìm mệnh đề đúng, mệnh đề sai

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng?

    a) Biết \log_{3}a = x;\log_{3}b =y với a,b \in
\mathbb{R}^{+}. Khi đó \log_{3}\left( 3a^{4}b^{5} ight) = 1 + 4x +5y Đúng||Sai

    b) Tập xác định của hàm số y = \sqrt{(x- 2)^{0}} + \log_{2}\left( 9 - x^{2} ight) là D = (2;3) Sai||Đúng

    c) Hàm số y = \ln( - x) nghịch biến trên khoảng ( - \infty;0)Sai||Đúng

    d) Có 31 giá trị nguyên của x thỏa mãn \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0 Đúng||Sai

    a) Ta có:

    \log_{3}\left( 3a^{4}b^{5} ight) =\log_{3}(3) + \log_{3}\left( a^{4} ight) + \log_{3}\left( b^{5}ight)

    = 1 + 4\log_{3}a + 5\log_{3}b = 1 + 4x +5y

    b) Điều kiện xác định: \left\{
\begin{matrix}
x - 2 eq 0 \\
9 - x^{2} > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x eq 2 \\
- 3 < x < 3 \\
\end{matrix} ight.\  \Leftrightarrow D = ( - 3;3)\backslash\left\{ 2
ight\}

    c) Điều kiện xác định: x <
0

    Cơ số a = e > 1 do đó hàm số đồng biến trên ( - \infty;0).

    d) Xét hàm số \left( 3^{x^{2}} - 9^{x}ight)\left\lbrack \log_{2}(x + 30) - 5 ightbrack = f(x) với x > - 30

    Cho f(x) = 0 \Leftrightarrow \left\lbrack\begin{matrix}3^{x^{2}} - 9^{x} = 0 \\\log_{2}(x + 30) - 5 = 0 \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
3^{x^{2}} = 3^{2x} \\
x + 30 = 2^{5} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 0 \\
\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Suy ra f(x) \leq 0 \Leftrightarrow
\left\lbrack \begin{matrix}
- 30 < x \leq 0 \\
x = 2 \\
\end{matrix} ight.

    Mặt khác x\mathbb{\in Z \Rightarrow}x \in
\left\{ - 29; - 28; - 27;...; - 2; - 1;0;2 ight\}

    Vậy có 31 số nguyên của x thỏa mãn bất phương trình \left( 3^{x^{2}} - 9^{x} ight)\left\lbrack\log_{2}(x + 30) - 5 ightbrack \leq 0.

  • Câu 15: Thông hiểu
    Xác định sự đúng sai của các kết luận

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 16: Thông hiểu
    Kiểm tra sự đúng sai của các kết luận

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    Đáp án là:

    Xác định tính đúng sai của các khẳng định dưới đây?

    a) Số gia của hàm số f(x) = x^{2} - 4x +
1 tương ứng với x\Delta x\Delta x(\Delta x + 2x - 4) Đúng||Sai

    b) Qua điểm A(0;2) có thể kẻ được 2 tiếp tuyến với đồ thị hàm số y =
x^{4} - 2x^{2} + 2 . Sai||Đúng

    c) Cho hàm số f(x) = \left\{\begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. . Khi đó f'(0) = \frac{1}{16} Đúng||Sai

    d) Cho hàm số y = \sqrt{x^{2} +
1} khi đó ta có y.y' =
2x Sai||Đúng

    a) Ta có:

    \Delta y = f(\Delta x + x) -
f(x)

    = (\Delta x + x)^{2} - 4(\Delta x + x) +
1 - \left( x^{2} - 4x + 1 ight)

    = \Delta x^{2} + 2\Delta x.x - 4\Delta x
= \Delta x(\Delta x + 2x - 4)

    b) Ta có

    Gọi d là tiếp tuyến của đồ thị hàm số đã cho

    Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng y = kx + 2

    Vì d tiếp xúc với đồ thị (C) nên hệ phương trình \left\{ \begin{matrix}
x^{4} - 2x^{2} + 2 = kx + 2(*) \\
4x^{3} - 4x = k(**) \\
\end{matrix} ight. có nghiệm

    Thay (**) vào (*) ta suy ra \left\lbrack\begin{matrix}x = 0 \\x = \pm \sqrt{\dfrac{2}{3}} \\\end{matrix} ight.

    Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{f(x) -f(0)}{x - 0} = \lim_{x ightarrow 0}\dfrac{\dfrac{3 - \sqrt{4 - x}}{4} -\dfrac{1}{4}}{x} = \lim_{x ightarrow 0}\frac{2 - \sqrt{4 -x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -
\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +
\sqrt{4 - x} ight)} = \lim_{x ightarrow 0}\frac{x}{4x\left( 2 +
\sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(
2 + \sqrt{4 - x} ight)} = \frac{1}{16}

    d) Ta có:

    y' = \frac{x}{\sqrt{x^{2} + 1}}
\Rightarrow y.y' = \sqrt{x^{2} + 1}.\frac{x}{\sqrt{x^{2} + 1}} =
x

  • Câu 17: Vận dụng
    Phân tích sự đúng sai của các kết luận

    Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.

    a) Xác suất để lấy được 4 viên bi đều màu trắng \frac{1}{1820}Đúng||Sai

    b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ \frac{4}{26} Sai||Đúng

    c) Xác suất để lấy được số bi có đủ 3 màu \frac{3}{4} Sai||Đúng

    d) Xác suất để lấy được số bi không đủ 3 màu \frac{1}{2}Đúng||Sai

    Đáp án là:

    Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.

    a) Xác suất để lấy được 4 viên bi đều màu trắng \frac{1}{1820}Đúng||Sai

    b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ \frac{4}{26} Sai||Đúng

    c) Xác suất để lấy được số bi có đủ 3 màu \frac{3}{4} Sai||Đúng

    d) Xác suất để lấy được số bi không đủ 3 màu \frac{1}{2}Đúng||Sai

    Số phần tử không gian mẫu là C_{16}^{4} =
1820

    a) Gọi A là biến cố “Lấy được 4 viên bi màu trắng”

    Số phần tử của A là C_{4}^{4} =
1

    Vậy xác suất để lấy được cả 4 viên bi màu trắng là: \frac{1}{1820}

    b) Gọi D là biến cố lấy được số bi trắng gấp hai lần số bi đen và đỏ

    Ta có các kết quả thuận lợi cho biến cố D là lấy 2 bi trắng 1 bi đen và 1 bi đỏ

    Ta có số phần tử của biến cố D là: C_{4}^{2}.C_{5}^{1}.C_{7}^{1} = 210

    Vậy xác suất cần tìm là P(D) =
\frac{3}{26}.

    c) Gọi E là biến cố lấy được các viên bi có đủ 3 màu

    Ta có các trường hợp thuận lợi cho biến cố E:

    Th1: Chọn 1 bi đen, 1 bi đỏ và 2 bi trắng nên ta có: C_{7}^{1}.C_{5}^{1}.C_{4}^{2} cách

    Th2: Chọn 1 bi đen, 2 bi đỏ và 1 bi trắng nên ta có: C_{7}^{1}.C_{5}^{2}.C_{4}^{1} cách

    Th3: Chọn 2 bi đen, 1 bi đỏ và 1 bi trắng nên ta có: C_{7}^{2}.C_{5}^{1}.C_{4}^{1} cách

    Suy ra số phần tử của biến cố E là C_{7}^{1}.C_{5}^{1}.C_{4}^{2} +
C_{7}^{1}.C_{5}^{1}.C_{4}^{2} + C_{7}^{2}.C_{5}^{1}.C_{4}^{1} =
910

    Vậy P(E) = \frac{1}{2}

    d) Ta có: E là biến cố lấy được các viên bi có đủ 3 màu khi đó \overline{E} là biến cố lấy được các viên bi không đủ 3 màu

    \Rightarrow P\left( \overline{E} ight)
= 1 - P(E) = \frac{1}{2}

  • Câu 18: Vận dụng cao
    Ghi lời giải bài toán vào ô trống

    Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng 2. Gọi điểm M là điểm nằm trên cạnh AA' sao cho mặt phẳng (C'MB) tạo với mặt phẳng (ABC) một góc nhỏ nhất. Khi đó diện tích tam giác C'MB có dạng \frac{a\sqrt{b}}{c};\left( a,b,c\mathbb{\in N}ight). Tính giá trị của biểu thức T = a + b - c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng 2. Gọi điểm M là điểm nằm trên cạnh AA' sao cho mặt phẳng (C'MB) tạo với mặt phẳng (ABC) một góc nhỏ nhất. Khi đó diện tích tam giác C'MB có dạng \frac{a\sqrt{b}}{c};\left( a,b,c\mathbb{\in N}ight). Tính giá trị của biểu thức T = a + b - c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Vận dụng
    Điền lời giải bài toán vào chỗ trống

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Lập số có 5 chữ số khác nhau \overline{a_{1}a_{2}a_{3}a_{4}a_{5}} từ các chữ số 1;2;3;4;5. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn a_{1} + a_{2} < a_{3} +a_{4}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Vận dụng
    Điền lời giải vào ô trống

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tính tổng các nghiệm nguyên thuộc đoạn \lbrack - 10;10brack của bất phương trình:

    \left( 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} - \frac{5}{3}\left( - 1 + \sqrt{10}ight)^{\log_{3}(x + 9)} \geq - \frac{2}{3}x - 6

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Vận dụng cao
    Ghi từng bước giải toán vào ô trống

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - mx^{2} +2m có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Viết phương trình tiếp tuyến \Delta với đồ thị (C) tại A biết tiếp tuyến cắt đường tròn (\gamma):x^{2} + (y - 1)^{2} = 9 theo một dây cung có độ dài nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (43%):
    2/3
  • Thông hiểu (33%):
    2/3
  • Vận dụng (14%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 8 lượt xem
Sắp xếp theo