Hàm số nào sau đây gián đoạn tại ?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Hàm số nào sau đây gián đoạn tại ?
Xét hàm số hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.
Chọn khẳng định đúng?
Tìm tập xác định của hàm số ?
Điều kiện xác định
Suy ra tập xác định của hàm số là: .
Cho hàm số . Tìm mệnh đề nào sai?
Mệnh đề sai là: “Tập xác định của hàm số là ”
Sửa lại như sau: “Tập xác định của hàm số là .
Tổng các nghiệm của phương trình bằng:
Điều kiện
Ta có:
Khi đó tổng bình phương các nghiệm của phương trình bằng 0
Tập nghiệm của bất phương trình là:
Điều kiện:
Ta có:
Kết hợp với điều kiện xác định ta suy ra được tập nghiệm của bất phương trình đã cho là: .
Có 6 học sinh được xếp vào 6 chỗ ngồi đã được ghi thứ tự trên một bàn dài. Tìm số cách sắp xếp học sinh ngồi vào bàn sao cho hai học sinh A và B không được ngồi cạnh nhau?
Sắp xếp 6 học sinh vào 6 chỗ ngồi trên một bàn dài có 6! = 720 cách
Có 5 vị trí cạnh nhau, sắp xếp hai học sinh A và B vào 5 vị trí cạnh nhau đó có 5.2 = 10 cách
Tiếp tục sắp xếp 4 học sinh còn lại có 4! = 24 cạc
Vậy số cách sắp xếp 6 học sinh sao cho A và B ngồi cạnh nhau là 10.24 = 240 cách
=> Số cách sắp xếp 6 học sinh sao cho A và B không ngồi cạnh nhau là 720 – 240 = 480 cách.
Hai xạ thủ cùng bắn mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của hai xạ thủ lần lượt là và
. Tính xác suất để có ít nhất một xạ thủ không bắn trúng bia?
Gọi A là biến cố có ít nhất một xạ thủ không bắn trúng bia
Khi đó là biến cố cả hai xạ thủ đều bắn trúng bia.
Đạo hàm của hàm số bằng biểu thức nào sau đây?
Ta có:
Cho hình chóp đáy
là hình thoi tâm I, cạnh bên
vuông góc với đáy. Gọi
lần lượt là hình chiếu của
lên
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Cho hình hộp chữ nhật . Mặt phẳng
vuông góc với mặt phẳng nào trong các mặt phẳng dưới đây?
Hình vẽ minh họa
Ta có: là hình hộp chữ nhật suy ra
Cho tứ diện . Gọi
là trực tâm tam giác
và
vuông góc với mặt phẳng đáy. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
H là trực tâm tam giác BCD nên
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
Cho hình chóp có đáy
là hình chữ nhật
. Kẻ đường cao
của tam giác
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) Diện tích tam giác bằng
Sai||Đúng
đúng
đúng
đúng
Diện tích tam giác bằng
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
Trong các mệnh đề sau, mệnh đề nào đúng?
a) Biết với
. Khi đó
Đúng||Sai
b) Tập xác định của hàm số là
Sai||Đúng
c) Hàm số nghịch biến trên khoảng
Sai||Đúng
d) Có 31 giá trị nguyên của x thỏa mãn Đúng||Sai
a) Ta có:
b) Điều kiện xác định:
c) Điều kiện xác định:
Cơ số do đó hàm số đồng biến trên
.
d) Xét hàm số với
Cho
Ta có bảng xét dấu như sau:
Suy ra
Mặt khác
Vậy có 31 số nguyên của x thỏa mãn bất phương trình .
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
Kiểm tra sự đúng sai của các kết luận sau?
a) Phương trình vô nghiệm. Sai||Đúng
b) Hàm số có 4 điểm gián đoạn. Đúng||Sai
c) Đúng||Sai
d) Để hàm số liên tục trên khoảng
thì
nhận giá trị bằng 2. Đúng||Sai
a) Xét hàm số có tập xác định
Hàm số liên tục trên ta có:
Vì nên phương trình
có ít nhất một nghiệm trên
.
b) Ta có:
Vậy hàm số đã cho có 4 điểm gián đoạn.
c) Ta có:
d) Ta có:
với thì
là hàm phân thức hữu tỉ xác định với mọi
. Do đó hàm số liên tục trên các khoảng
Tại ta có:
Để hàm số liên tục trên khoảng thì hàm số phải liên tục tại x = 0 khi đó:
.
Vậy để hàm số liên tục trên khoảng
thì
nhận giá trị là
.
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
Xác định tính đúng sai của các khẳng định dưới đây?
a) Số gia của hàm số tương ứng với
và
là
Đúng||Sai
b) Qua điểm có thể kẻ được 2 tiếp tuyến với đồ thị hàm số
. Sai||Đúng
c) Cho hàm số . Khi đó
Đúng||Sai
d) Cho hàm số khi đó ta có
Sai||Đúng
a) Ta có:
b) Ta có
Gọi d là tiếp tuyến của đồ thị hàm số đã cho
Vì A(0; 2) thuộc đường thẳng d nên phương trình của d có dạng
Vì d tiếp xúc với đồ thị (C) nên hệ phương trình có nghiệm
Thay (**) vào (*) ta suy ra
Chứng tỏ từ A ta có thể kẻ được 3 tiếp tuyến đến đồ thị (C).
c) Ta có:
d) Ta có:
Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.
a) Xác suất để lấy được 4 viên bi đều màu trắng Đúng||Sai
b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ Sai||Đúng
c) Xác suất để lấy được số bi có đủ 3 màu Sai||Đúng
d) Xác suất để lấy được số bi không đủ 3 màu Đúng||Sai
Một bình chứa 16 viên bi khác nhau trong đó có 7 viên bi đen, 5 viên bi đỏ và 4 viên bi trắng. Lấy ngẫu nhiên 4 viên bi.
a) Xác suất để lấy được 4 viên bi đều màu trắng Đúng||Sai
b) Xác suất để số bi trắng gấp hai lần số bi đen và đỏ Sai||Đúng
c) Xác suất để lấy được số bi có đủ 3 màu Sai||Đúng
d) Xác suất để lấy được số bi không đủ 3 màu Đúng||Sai
Số phần tử không gian mẫu là
a) Gọi A là biến cố “Lấy được 4 viên bi màu trắng”
Số phần tử của A là
Vậy xác suất để lấy được cả 4 viên bi màu trắng là:
b) Gọi D là biến cố lấy được số bi trắng gấp hai lần số bi đen và đỏ
Ta có các kết quả thuận lợi cho biến cố D là lấy 2 bi trắng 1 bi đen và 1 bi đỏ
Ta có số phần tử của biến cố D là:
Vậy xác suất cần tìm là .
c) Gọi E là biến cố lấy được các viên bi có đủ 3 màu
Ta có các trường hợp thuận lợi cho biến cố E:
Th1: Chọn 1 bi đen, 1 bi đỏ và 2 bi trắng nên ta có: cách
Th2: Chọn 1 bi đen, 2 bi đỏ và 1 bi trắng nên ta có: cách
Th3: Chọn 2 bi đen, 1 bi đỏ và 1 bi trắng nên ta có: cách
Suy ra số phần tử của biến cố E là
Vậy
d) Ta có: E là biến cố lấy được các viên bi có đủ 3 màu khi đó là biến cố lấy được các viên bi không đủ 3 màu
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng . Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Cho hình lăng trụ tam giác đều có tất cả các cạnh bằng . Gọi điểm M là điểm nằm trên cạnh
sao cho mặt phẳng
tạo với mặt phẳng
một góc nhỏ nhất. Khi đó diện tích tam giác
có dạng
. Tính giá trị của biểu thức
?
Lập số có 5 chữ số khác nhau từ các chữ số
. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn
?
Lập số có 5 chữ số khác nhau từ các chữ số
. Chọn ngẫu nhiên một số trong các số được tạo thành. Tính xác suất để số chọn được thỏa mãn
?
Tính tổng các nghiệm nguyên thuộc đoạn của bất phương trình:
Tính tổng các nghiệm nguyên thuộc đoạn của bất phương trình:
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.
Cho hàm số có đồ thị
với
là tham số thực. Gọi
là điểm thuộc đồ thị
có hoành độ bằng
. Viết phương trình tiếp tuyến
với đồ thị
tại
biết tiếp tuyến cắt đường tròn
theo một dây cung có độ dài nhỏ nhất.