Cho tứ diện ABCD có tam giác ABC vuông tại A, AB = 6, AC = 8. Tam giác BCD có độ dài đường cao kẻ từ đỉnh C bằng 8. Mặt phẳng (BCD) vuông góc với mặt phẳng (ABC). Cosin góc giữa mặt phẳng (ABD) và (BCD) bằng:
Hình vẽ minh họa:
Kẻ AH ⊥ BC tại H, CK ⊥ BD tại K, HI ⊥ BD tại I.
Theo giả thiết suy ra CK = 8.
Vì (ABC) ⊥ (BCD) AH ⊥ BC nên AH ⊥ (BCD).
Ta có:
=> Góc AIH là góc giữa hai mặt phẳng (ABD) và (BCD).
Xét tam giác ABC vuông tại A
Xét tam giác AHI vuông tại H
=>