Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB = a, SA ⊥ (ABC), SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy là:
Hình vẽ minh họa:
Theo bài ta có AB là hình chiếu của SB trên (ABC)
Vậy
Mà ∆SBA vuông cân tại A nên
Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , . Góc giữa SC với mặt phẳng (ABCD) là:
Hình vẽ minh họa:
Ta có:
Lại có:
=>
Cho hình chóp S.ABCD có ABCD là hình vuông, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi M là trung điểm BC. Gọi là góc hợp bởi đường thẳng SA và mặt phẳng (SDM). Tính
+ Không mất tính tổng quát, đặt AB = 2
+ Gọi N là trung điểm AB suy ra
+ Gọi
Gọi
+ Ta có
+ Ta có
+ Gọi NH là đường cao
+ Tam giác NJI đồng dạng tam giác MBJ
+ Tam giác SAB là tam giác đều cạnh bằng 2
Cho hình chóp S.ABC có đáy là tam giác vuông tại C, SA vuông góc với mặt phẳng đáy, SA = a, AC = a, . Góc giữa đường thẳng SB và mặt phẳng đáy bằng:
Hình vẽ minh họa:
Ta có:
SA ⊥ (ABC) nên AB là hình chiếu của SA trên mặt phẳng (ABC)
=>
Mặt khác có tam giác ABC vuông tại C:
Vậy (SB, (ABC)) = 300
Cho hình lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Gọi M là trung điểm của AB và α là góc tạo bởi đường MC’ và mặt phẳng (ABC). Khi đó tan α bằng bao nhiêu?
Hình vẽ minh họa:
Ta có: CM là hình chiếu của C’M lên (ABC)
=> Góc giữa MC’ và (ABC) là góc giữa MC’ và MC.
Xét tam giác MCC’ vuông tại C ta có:
Cho hình hộp chữ nhật ABCD.A’B’C’D’ nội tiếp mặt cầu (S) có bán kính . Gọi I; J là trung điểm BC, CD và
là góc giữa đường thẳng AC’ và mặt phẳng (C’IJ). Giá trị lớn nhất của
là
Đặt
Gọi K là hình chiếu của A lên (C’IJ)
Ta có
Trong (ABCD) kẻ tại E
Trong (CEC’) kẻ tại H
Suy ra
Do đó
Ta có:
Vậy đạt giá trị lớn nhất là
Dấu xảy ra khi:
Cho hình chóp S.ABCD có đáy là hình thoi cạnh 2a, ,
và SA ⊥ (ABCD). Tính góc giữa đường thẳng SA và mặt phẳng (SBD).
Hình vẽ minh họa:
Vì tam giác ABC cân và có góc 600 nên nó là tam giác đều
Gọi O là trung điểm của AC.
Ta có: Hai mặt phẳng (SAC) và (SBD) vuông góc nhau theo giao tuyến SO
=> Hình chiếu vuông góc của SA lên mặt phẳng (SBD) là SO
=>
Xét tam giác vuông SOA ta có:
=>
Vậy góc giữa SA và mặt phẳng (SBD) bằng 300.
Cho hình chóp S.ABC có SA = SB = CA = CB. Tính ϕ là góc giữa SC và mặt phẳng (ABC), biết (SAB) vuông góc với (ABC):
Hình vẽ minh họa:
Gọi H là trung điểm của AB, ta có SH ⊥ AB, CH ⊥ AB
Mà (SAB) ⊥ (ABC) nên SH ⊥ (ABC)
Suy ra
Ta có:
∆SAB = ∆CAB (c.c.c)
=> SH = CH. Do đó ∆SCH vuông cân tại H
Vậy
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình lập phương ABCD.A’B’C’D’. Tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) bằng bao nhiêu?
Hình vẽ minh họa:
Do ABCD.A’B’C’D’ là hình lập phương nên BA ⊥ (ADD’A’)
Do đó góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là góc
Gọi độ dài cạnh của hình lập phương là a
Khi đó
=>
Vậy tan góc giữa đường thẳng BD’ và mặt phẳng (ADD’A’) là
Cho hình hộp ABCD.A’B’C’D’, A’B’C’D’ là hình chữ nhật tâmH, A’D’ = 2a, , H là hình chiếu vuông góc của A trên mặt phẳng (A’B’C’D’),
. Gọi
là góc giữa hai đường thẳng AD’ và DB’. Tính
.
Bước 1: Xác định góc giữa hai đường thẳng AD’ và DB’
Kẻ đường thẳng d qua D, song song với AD', cắt A’D’ tại E
Suy ra
Bước 2: Tính
Kẻ đường thẳng qua H, song song với A’D’, cắt A’B’ tại F.
Lấy điểm I sao cho ADIH là hình bình hành.
Suy ra DI // AH , mà
=>
Ta có
Trong tam giác EDB’, có:
Suy ra
Cho lăng trụ đều ABC.A’B’C’ có tất cả các cạnh bằng a. Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) bằng:
Hình vẽ minh họa:
Vì BB’ ⊥ (A’B’C’) nên A’B’ là hình chiếu vuông góc của A’B lên (A’B’C’)
=> Góc giữa đường thẳng A’B và mặt phẳng (A’B’C’) là
Ta có: A’B’ = BB’ = a nên tam giác B’A’B vuông cân tại B’
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SC vuông góc với đáy và . Tính tan góc giữa đường thẳng SA và mặt phẳng (SBC).
Hình vẽ minh họa:
Ta có:
=> AB ⊥ (SBC)
Suy ra hình chiếu của SA lên (SBC) là SB
=>
Trong tam giác SCB vuông tại C, ta có:
Trong tam giác SBA vuông tại B, ta có:
Vậy tan góc giữa đường thẳng SA và mặt phẳng (SBC) là
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B, AD = 2BC = 2AB = 2a, SA = 2a và SA vuông góc với ABCD. Gọi M là trung điểm SB và là góc tạo bởi đường thẳng MD và mặt phẳng (SCD). Khi đó
bằng:
Ta có tam giác SAB vuông tại A nên
Ta có:
Xét tam giác MDA vuông tại A theo định lí Pytago ta có:
Ta có
Gọi N là giao của AB và CD. Gọi P là trung điểm AD nên ABCP là hình vuông
=>
Ta có (hai đường chéo hình vuông)
Mặt khác BP // CD.
Do đó tam giác ACD vuông tại nên tam giác ACN vuông tại C, mặt khác nên B là trung điểm AN.
Ta có AB giao (SCB) tại N nên
Ta có
Trong (SAC) kẻ
Xét tam giác SAC vuông tại A nên
Do đó
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Hai mặt phẳng (SAC) và (SBD) cùng vuông góc với đáy. Góc giữa SB và mặt phẳng (ABCD) là góc giữa cặp đường thẳng nào sau đây?
Hình vẽ minh họa:
Hai mặt phẳng (SAC) và (SBD) cắt nhau theo giao tuyến SO và cùng vuông góc với đáy nên SO ⊥ (ABCD).
Vậy góc giữa SB và mặt phẳng (ABCD) là góc giữa SB và BD.