Gieo ngẫu nhiên một con xúc xắc. Hãy liệt kê các phần tử của biến cố mặt xuất hiện có số chấm chẵn?
Ta có:
Vì mặt xuất hiện có số chấm chẵn nên các phần tử của biến cố cần tìm là:
Gieo ngẫu nhiên một con xúc xắc. Hãy liệt kê các phần tử của biến cố mặt xuất hiện có số chấm chẵn?
Ta có:
Vì mặt xuất hiện có số chấm chẵn nên các phần tử của biến cố cần tìm là:
Lấy ngẫu nhiên 3 tấm thẻ trong hộp đựng 10 thẻ trắng, 8 thẻ đỏ và 7 thẻ xanh. Tính xác suất để lấy được 3 tấm thẻ cùng màu?
Gọi A là biến cố lấy được 3 thẻ trắng
B là biến cố lấy được 3 thẻ đỏ
C là biến cố lấy được 3 thẻ xanh
Gọi D là biến cố lấy được 3 thẻ cùng màu
Khi đó
Chọn ngẫu nhiên một gia đình có 3 con trong khu dân cư và quan sát giới tính của các con trong gia đình đó. Tính số phần tử của không gian mẫu.
Chọn ngẫu nhiên một gia đình có 3 con và quan sát giới tính của ba người con đó ta có sơ đồ như sau:
Không gian mẫu
Giả sử là hai biến cố xung khắc. Khẳng định nào sau đây đúng?
Ta có:
Vì M và N là hai biến cố xung khắc nên
Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?
Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ
Khi đó ta có:
TH1: lấy được 5 viên bi xanh cách
TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ cách
TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ cách
Do đó xác suất của biến cố A là:
Sơ đồ phân phối điện như hình vẽ:
Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C, D, V. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C là và của các trạm D, V là
. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).
Gọi Q là biến cố nơi tiêu thụ Q không mất điện
A, B, C, D, V là biến cố các trạm tải nhỏ A, B, C, D, V gặp sự cố kĩ thuật.
Ta có:
Suy ra
Vậy
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi T là tập hợp tất cả các số tự nhiên có 4 chữ số khác nhau. Trong tập T chọn ngẫu nhiên một số. Khi đó số phần tử của biến cố P “số được chọn hoặc là số chia hết cho 5 hoặc có một chữ số 1 xuất hiện đúng một lần” bằng 2478
Gọi biến cố A là biến cố chọn trong T một số có mặt chữ số 1 đúng 1 lần.
Biến cố B là biến cố chọn trong T một số chia hết cho 5
Biến cố số được chọn vừa có chữ số 1 xuất hiện một lần vừa chia hết cho 5.
Gọi số tự nhiên có 4 chữ số có dạng:
Có 4 khả năng để số có một chữ số 1 xuất hiện một lần là a = 1; b = 1; c = 1; d = 1.
Do đó số phần tử của A là
Số chia hết cho 5 có hai dạng . Do đó số phần tử của B là
Số vừa có 1 chữ số 1 xuất hiện vừa chia hết cho 5 xảy ra một trong các khả năng sau: . Do đó số phần tử của
là:
Vậy số phần tử biến cố P là:
Cho phép thử có không gian mẫu . Gọi
là biến cố lấy ra được số nguyên tố. Hãy liệt kê các phần tử của biến cố
?
Số nguyên tố là số tự nhiên lớn hơn 1 và chia hết cho 1 và chính nó vì vậy:
Có bao nhiêu cách lấy hai con bài từ cỗ bài tú lơ khơ gồm 52 con?
Mỗi cách lấy 2 con bài từ 52 con là một tổ hợp chập 2 của 52 phần tử.
Vậy số cách lấy hai con bài từ cỗ bài tú lơ khơ 52 con là cách.
Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96
Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96
Từ giả thiết suy ra xác suất để người thứ nhất, người thứ hai và người thứ ba không bắn trúng hồng tâm lần lượt là .
Để có đúng 2 người bắn trúng hồng tâm ta có các trường hợp sau:
Trường hợp 1 |
+ Người thứ nhất bắn trúng + Người thứ hai bắn trúng + Người thứ ba không trúng |
Xác suất: |
Trường hợp 2 |
+ Người thứ nhất bắn trúng + Người thứ hai không bắn trúng + Người thứ ba bắn trúng |
Xác suất: |
Trường hợp 3 |
+ Người thứ nhất không bắn trúng + Người thứ hai bắn trúng + Người thứ ba bắn trúng |
Xác suất: |
Vậy xác suất để có đúng 2 người bắn trúng đích là
Biết và
là hai biến cố đối nhau. Chọn khẳng định đúng?
Ta có:
Trong một phép lai, cho hai giống vịt lông đen thuần chủng và lông trắng thuần chủng giao phối với nhau được đời cây F1 toàn là lông đen. Tiếp tục cho con đời F1 giao phối với nhau được một đàn con mới. Chọn ngẫu nhiên 2 con trong đàn vịt con mới. Ước lượng xác suất của biến cố trong 2 con vịt được chọn có ít nhất một con lông đen?
Quy ước gene A: lông đen và gene a: lông trắng
Ở thế hệ F2 ba kiểu gene AA, Aa, aa xuất hiện với tỉ lệ 1: 2: 1 nên tỉ lệ lông đen với lông trắng là 3 : 1
Trong đàn vịt mới xác suất để được một con lông đen là và con lông trắng là
Gọi là biến cố có đúng 1 con lông đen trong 2 con được chọn
Gọi B là biến cố có 2 con vịt lông đen trong 2 con được chọn
Khi đó là biến cố có ít nhất 1 con lông đen trong 2 con được chọn
Do A và B là hai biến cố xung khắc nên
Chọn ngẫu nhiên một số nguyên dương không vượt quá 20. Giả sử biến cố M là biến cố số được chọn là số nguyên tố. Mô tả nào sau đây đúng?
Các số nguyên dương không lớn hơn 20 là:
Các số nguyên tố không vượt quá 20 là:
Vậy
Xác suất sút bóng phạt đền 11m của hai cầu thủ A và B lần lượt là và
. Biết rằng mỗi cầu thủ sút một quả phạt đền và hai người sút độc lập. Tìm xác suất để ít nhất 1 người sút bóng thành công?
Xác suất sút không thành công của cầu thủ A là
Xác suất sút không thành công của cầu thủ B là
Xác suất cả hai cầu thủ sút không thành công là
=> Xác suất để ít nhất 1 người sút bóng thành công là:
Giả sử có bảy bông hoa khác nhau và ba lọ hoa khác nhau. Hỏi có bao nhiêu cách cắm ba bông hoa vào ba lọ đã cho (mỗi lọ cắm một bông)?
Số cách xếp bảy bông hoa khác nhau vào ba lọ hoa khác nhau là số chỉnh hợp chập 3 của 7 phần tử.
=> Có cách.
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Rút đồng thời 5 tấm thẻ từ một chiếc hộp có 12 tấm thẻ được đánh số từ 1 đến 12. Xác định số kết quả thuận lợi cho biến cố “Tổng các số ghi trên 5 tấm thẻ rút được là số lẻ?
Đáp án: 396
Gọi A là biến cố tổng các số ghi trên 5 tấm thẻ rút được là số lẻ.
Ta có trong 12 tấm thẻ được đánh số từ 1 đến 12 thì có 6 tấm thẻ ghi số chẵn và 6 tấm thẻ ghi số lẻ
Để tổng các số ghi trên 5 tấm thẻ rút được là số lẻ thì số thẻ ghi số lẻ là lẻ.
Ta có các trường hợp như sau:
TH1: 1 thẻ ghi số lẻ và 4 thẻ ghi số chẵn
Có
TH2: 3 thẻ ghi số lẻ và 2 thẻ ghi số chẵn
Có
TH3: 5 thẻ đều ghi số lẻ
Sắp xếm 4 bạn nam và 4 bạn nữ vào một bàn tròn. Biết mỗi bạn chỉ ngồi 1 chỗ và bàn có đủ 8 chỗ ngồi. Tính xác suất sao cho hai bạn cùng giới không ngồi cạnh nhau?
Gọi A là biến cố 2 người không cùng giới ngồi cạnh nhau
n là số cách sắp xếp người xung quanh bàn tròn
Mỗi cách sắp xếm là hoán vị của 8 vị trí, khi đó số hoán vị cần tìm là 8!
Mỗi hoán vị không đổi nếu ta thực hiện vòng quanh nên mỗi hoán vị đã được tính 8 lần.
Vậy
Xếp 4 nữ vào 4 vị trí ta có: cách
Xếp 4 nam vào 4 vị trí qua 4 khoảng, số cách sắp xếp
Vậy
Một nhóm học sinh gồm 4 nam và 6 nữ. Chọn ngẫu nhiên 4 học sinh. Gọi M là biến cố 4 học sinh được chọn được có cả nam và nữ. Khi đó số phần tử của biến cố đối của A là:
Ta có: là biến cố cả 4 bạn được chọn đều là nam hoặc 4 bạn đều là nữ.
Do đó số phần tử của
Rút ngẫu nhiên 3 tấm thẻ từ một hộp chứa 12 thẻ được đánh số từ 1 đến 12. Tính số kết quả thuận lợi của biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”?
Số phần tử không gian mẫu:
Biến cố M “trong ba tấm thẻ chọn ra không có hai tấm thẻ nào ghi hai số tự nhiên liên tiếp”
Suy ra biến cố “trong ba tấm thẻ chọn ra có ít nhất hai tâm thẻ ghi hai số tự nhiên liên tiếp”
Bộ ba có dạng với
có 10 bộ
Bộ ba số có dạng với
có 9 bộ
Tương tự mỗi bộ ba số có dạng đều có 9 bộ
Học sinh A làm bài kiểm tra 15 phút môn Toán gồm 10 câu hỏi trắc nghiệm, mỗi câu hỏi gồm 4 phương án trả lời và chỉ có một phương án đúng. Nếu trả lời đúng 1 câu hỏi được 1 điểm, trả lời sai không có điểm. Biết A đã làm đúng 5 câu hỏi, vì thời gian hạn chế nên A đã khoanh trả lời ngẫu nhiên các câu hỏi còn lại. Tính xác suất để A đạt được ít nhất 8 điểm?
Bạn A trả lời đúng 5 câu hỏi nên A đã đạt được 5 điểm
Để được ít nhất 8 điểm thì A phải trả lời đúng ít nhất 3 câu trong 5 câu còn lại.
TH1: 3 câu đúng, 2 câu sai
TH2: 4 câu đúng, 1 câu sai
TH3: 5 câu đúng
Vậy xác suất cần tìm là: