Ôn tập chương 6 Hàm số mũ và hàm số lôgarit CTST

Khoahoc.vn xin gửi tới bạn đọc bài viết Trắc nghiệm Toán lớp 11: Ôn tập chương 6 Hàm số mũ và hàm số lôgarit sách Chân trời sáng tạo. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Chọn khẳng định sai

    Cho a,b,c >
0,a eq 1,b eq 1. Trong các khẳng định dưới đây, khẳng định nào sai?

    Hướng dẫn:

    \log_{a^{c}}b = c\log_{a}b sai vì \log_{a^{c}}b =\frac{1}{c}\log_{a}b

  • Câu 2: Vận dụng cao
    Tìm tất cả các tập giá trị của a

    Tìm tất cả các tập giá trị của a để  \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}}?

    Hướng dẫn:

    Ta có: \sqrt[7]{{{a^2}}} = \sqrt[{21}]{{{a^6}}}

    => \sqrt[{21}]{{{a^5}}} > \sqrt[7]{{{a^2}}} \Rightarrow \sqrt[{21}]{{{a^5}}} > \sqrt[{21}]{{{a^6}}}

    Mà 5 < 6 => 0 < a < 1

  • Câu 3: Nhận biết
    Giải bất phương trình

    Tập nghiệm của bất phương trình \log_{2}(3x + 1) < 2 là:

    Hướng dẫn:

    Điều kiện: x > -
\frac{1}{3}

    Bất phương trình tương đương:

    {\log _2}\left( {3x + 1} ight) < 2 \Leftrightarrow 3x + 1 < 4

    \Leftrightarrow x < 1

    Kết hợp với điều kiện ta được nghiệm bất phương trình là: - \frac{1}{3} < x < 1

    Vậy tập nghiệm bất phương trình là: \left( - \frac{1}{3};1 ight)

  • Câu 4: Vận dụng
    Tính giá trị biểu thức D

    Tính giá trị biểu thức D = \log\left( \tan 1^{0} ight) + \log\left(
\tan 2^{0} ight) + ... + \log\left( tan89^{0} ight).

    Hướng dẫn:

    Ta có:

    D = \log\left( \tan 1^{0} ight) +\log\left( \tan 2^{0} ight) + ... + \log\left( \tan89^{0}ight)

    D = \log\left( \tan1^{0}.\tan2^{0}...\tan89^{0} ight)

    D = \log\left\lbrack \tan1^{0}.\tan2^{0}...\tan\left( 90^{0} - 2^{0} ight).\tan\left( 90^{0} -1^{0} ight) ightbrack

    D = \log\left( \tan1^{0}.\tan2^{0}...\cot2^{0}.\cot1^{0} ight)

    D = \log\left\lbrack \left( \tan1^{0}..\cot1^{0} ight)\left( \tan 2^{0}.\cot2^{0} ight)...ightbrack

    D = \log1 = 0

  • Câu 5: Nhận biết
    Tìm biểu thức không có nghĩa

    Trong các biểu thức sau, biểu thức nào không có nghĩa?

    Hướng dẫn:

    Lũy thừa với số mũ không nguyên thì cơ số phải dương nên biểu thức ( - 4)^{- \frac{1}{3}} không có nghĩa.

  • Câu 6: Vận dụng
    Tính giá trị nhỏ nhất số tiền anh B gửi vào ngân hàng

    Anh B dự định gửi x triệu đồng vào ngân hàng với lãi suất 6,5%/ năm. Để sau 3 năm số tiền lãi thu được đủ để mua một vật dụng trị giá 30 triệu đồng thì số tiền x;\left( x\mathbb{\in N} ight) tối thiểu mà anh B cần gửi vào ngân hàng là bao nhiêu? Biết cứ sau mỗi năm, số tiền lãi sẽ được nhập với vốn ban đầu

    Hướng dẫn:

    Áp dụng công thức tính lãi kép: T_{n} =
x(1 + x)^{n}

    Với T_{n} là tổng giá trị đạt được sau n kì, x là số vốn gốc, r là lãi suất mỗi kì.

    Số tiền lãi thu được sau n kì là:

    P_{n} -
x = x(1 + r)^{n} - x = x\left\lbrack (1 + r)^{n} - 1
ightbrack

    Khi dó:

    30 = x\left\lbrack (1 + 6,5\%)^{3} - 1
ightbrack

    \Leftrightarrow x \approx
144,27 triệu đồng

  • Câu 7: Nhận biết
    Tính giá trị biểu thức M

    Cho x >
0, giá trị biểu thức M =
x\sqrt[5]{x} bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    M = x\sqrt[5]{x} = x^{1}.x^{\frac{1}{5}}
= x^{1 + \frac{1}{5}} = x^{\frac{6}{5}}

  • Câu 8: Thông hiểu
    Tính x + y

    Cho a,b >
0. Nếu viết \log_{3}\left(\sqrt[5]{a^{3}b} ight)^{\frac{2}{3}} = \frac{x}{15}\log_{3}a +\frac{y}{15}\log_{3}b thì giá trị x
+ y bằng bao nhiêu?

    Hướng dẫn:

    Ta có:

    \log_{3}\left( \sqrt[5]{a^{3}b}ight)^{\frac{2}{3}} = \log_{3}a^{\frac{2}{5}} +\log_{3}b^{\frac{2}{15}}

    = \frac{2}{5}\log_{3}a +\frac{2}{15}\log_{3}b = \frac{6}{15}\log_{3}a +\frac{2}{15}\log_{3}b

    \Rightarrow x + y = 8

  • Câu 9: Nhận biết
    Tính giá trị biểu thức

    Giá trị của biểu thức \log_{2}5.\log_{5}64

    Hướng dẫn:

    Ta có:

    \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 10: Vận dụng
    Giải bất phương trình mũ

    Tìm tập nghiệm của bất phương trình 4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}} >
x^{2}.2^{x^{2}} + 8x + 12.

    Hướng dẫn:

    Ta có:

    4x^{2} + x.2^{x^{2} + 1} + 3.2^{x^{2}}
> x^{2}.2^{x^{2}} + 8x + 12

    \Leftrightarrow \left( 4 - 2^{x^{2}}
ight)\left( x^{2} - 2x - 3 ight) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
4 - 2^{x^{2}} > 0 \\
x^{2} - 2x - 3 > 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
4 - 2^{x^{2}} < 0 \\
x^{2} - 2x - 3 < 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
\sqrt{2} > x > - \sqrt{2} \\
\left\lbrack \begin{matrix}
x < - 1 \\
x > 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
\left\lbrack \begin{matrix}
x < - \sqrt{2} \\
x > \sqrt{2} \\
\end{matrix} ight.\  \\
- 1 < x < 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
- \sqrt{2} < x < - 1 \\
\sqrt{2} < x < 3 \\
\end{matrix} ight.

    Vậy tập nghiệm bất phương trình là: S =
\left( - \sqrt{2}; - 1 ight) \cup \left( \sqrt{2};3
ight)

  • Câu 11: Nhận biết
    Tìm x để hàm số có nghĩa

    Tìm tập xác định của hàm số y = - \log\left( 2x - x^{2} ight)?

    Hướng dẫn:

    Điều kiên xác định:

    2x - x^{2} > 0 \Leftrightarrow 0 <
x < 2

    Vậy tập xác định của hàm số là: D = (0;2)

  • Câu 12: Thông hiểu
    Chọn kết luận đúng

    Cho \left(
\sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y}, khi đó:

    Hướng dẫn:

    Ta có:\left\{ \begin{matrix}
0 < \sqrt{2} - 1 < 1 \\
\left( \sqrt{2} - 1 ight)^{x} < \left( \sqrt{2} - 1 ight)^{y} \\
\end{matrix} ight.\  \Rightarrow x > y

  • Câu 13: Nhận biết
    Tìm tập nghiệm bất phương trình

    Tìm tập nghiệm của bất phương trình 3^{2x - 1} > 27 là:

    Hướng dẫn:

    Ta có:

    3^{2x - 1} > 27 \Leftrightarrow 3^{2x
- 1} > 3^{3}

    \Leftrightarrow 2x - 1 > 3
\Leftrightarrow x > 2

    Vậy tập nghiệm của bất phương trình là: (2; + \infty).

  • Câu 14: Thông hiểu
    Tính giá trị biểu thức Q

    Cho 4^{x} + 4^{-
x} = 14, khi đó Q = \frac{2 + 2^{x}
+ 2^{- x}}{7 - 2^{x} - 2^{- x}} có giá trị bằng:

    Hướng dẫn:

    Ta có:

    4^{x} + 4^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} - 2.2^{x}.2^{- x} = 14

    \Leftrightarrow \left( 2^{x} + 2^{- x}
ight)^{2} = 16

    \Leftrightarrow 2^{x} + 2^{- x} =
4

    Vậy Q = \frac{2 + 2^{x} + 2^{- x}}{7 -
2^{x} - 2^{- x}} = \frac{2 + 4}{7 - 4} = 2

  • Câu 15: Thông hiểu
    Tìm tập xác định của hàm số

    Xác định tập xác định D của hàm số y = \sqrt{- 2x^{2} + 5x - 2} +
\ln\sqrt[4]{\frac{1}{x^{2} - 1}}.

    Hướng dẫn:

    Hàm số đã cho xác định khi và chỉ khi:

    \left\{ \begin{matrix}- 2x^{2} + 5x - 2 \geq 0 \\\dfrac{1}{x^{2} - 1} > 0 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{gathered}
  \dfrac{1}{2} \leqslant x \leqslant 2 \hfill \\
  \left[ {\begin{array}{*{20}{c}}
  {x <  - 1} \\ 
  {x > 1} 
\end{array}} ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow 1 < x \leqslant 2

    Vậy tập xác định của hàm số là: D =
(1;2brack

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (47%):
    2/3
  • Thông hiểu (27%):
    2/3
  • Vận dụng (20%):
    2/3
  • Vận dụng cao (7%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 14 lượt xem
Sắp xếp theo