Cho cấp số nhân có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 4 của cấp số nhân đã cho.
Ta có:
Khi đó
Cho cấp số nhân có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 4 của cấp số nhân đã cho.
Ta có:
Khi đó
Cho cấp số nhân có các số hạng lần lượt là . Tính tổng
của tất cả các số hạng của cấp số nhân đã cho.
Cấp số nhân đã cho có
=>
Cho cấp số nhân có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Mà n là số chẵn và
Cho cấp số nhân có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Cho cấp số nhân có
. Mệnh đề nào sau đây đúng?
Theo bài ra ta có:
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Theo giả thiết ta có:
Trong các dãy số cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Cho dãy số với
. Khẳng định nào sau đây đúng?
Ta có: là cấp số nhân có
.
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Với giá trị nào dưới đây thì các số
theo thứ tự đó lập thành một cấp số nhân?
Ta có: lập thành một cấp số nhân
Dãy số nào sau đây không phải là cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Trong các dãy số sau, dãy số nào không phải cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?
Với mỗi số nguyên dương n, ký hiệu là số dân của thành phố A sau n năm.
Khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu là
và công bội
=> Số dân của thành phố A sau 5 năm là: (triệu người).
Tính giá trị u2018 của dãy số (un) xác định bởi
Ta có:
Đặt
=> Dãy số (vn) là cấp số nhân với
=>
Một quả bóng rơi từ độ cao 6m với phương vuông góc với mặt đất. Mỗi lần chạm đất quả bóng nảy lên với độ cao bằng độ cao của lần rơi trước. Tính quãng đường quả bóng đã bay từ lúc thả bóng cho đến lúc bóng không nảy nữa.
Ta có: Quãng đường bóng bay bằng tổng quãng đường bóng nảy lên và quãng đường bóng rơi xuống
Vì mỗi lần bóng nảy lên bằng lần nảy trước nên ta có tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn có
=>
Tổng quãng đường bóng rơi xuống bằng khoảng cách độ cao ban đầu và tổng quãng đường bóng nảy lên là:
Đây là tổng của cấp số nhân lùi vô hạn với
=>
Vậy tổng quãng đường bóng bay là 42m