Luyện tập Đường tròn trong mặt phẳng tọa độ (Dễ)

Cùng luyện tập bài Đường tròn trong mặt phẳng tọa độ các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I(
- 2;3) và đi qua M(2; - 3) có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I( - 2;3) \\
R = IM = \sqrt{(2 + 2)^{2} + ( - 3 - 3)^{2}} = \sqrt{52} \\
\end{matrix} ight.

    ightarrow (C):(x + 2)^{2} + (y - 3)^{2}
= 52.

    Hay (C):x^{2} + y^{2} + 4x - 6y - 39 =
0.

  • Câu 2: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn đường kính AB với A(3; -
1),B(1; - 5) có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = \frac{1}{2}AB = \frac{1}{2}\sqrt{(1 - 3)^{2} + ( - 5 + 1)^{2}} =
\sqrt{5} \\
\end{matrix} ight.

    ightarrow (C):(x - 2)^{2} + (y + 3)^{2}
= 5.

  • Câu 3: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua hai điểm 4x^{2} + y^{2} - 10x - 6y - 2 = 0. và tiếp xúc với đường thẳng \Delta:3x + y - 3 =
0. Viết phương trình đường tròn (C), biết tâm của (C) có tọa độ là những số nguyên.

    Hướng dẫn:

    AB:x - y + 1 = 0, đoạn AB có trung điểm M(2;3) ightarrowtrung trực của đoạn AB là d:x + y - 5 = 0
ightarrow I(a;5 - a),\ \ a\mathbb{\in Z}.

    Ta có: R = IA = d\lbrack I;\Deltabrack
= \sqrt{(a - 1)^{2} + (a - 3)^{2}} = \frac{|2a +
2|}{\sqrt{10}}

    \Leftrightarrow a = 4 ightarrow
I(4;1),\ R = \sqrt{10}.

    Vậy phương trình đường tròn là: (x -
4)^{2} + (y - 1)^{2} = 10 \Leftrightarrow x^{2} + y^{2} - 8x - 2y + 7 =
0.

  • Câu 4: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} = 9 là:

    Hướng dẫn:

    (C):x^{2} + y^{2} =
9\overset{}{ightarrow}I(0;0),\ \ R = \sqrt{9} = 3.

  • Câu 5: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua điểm M(2;1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    Hướng dẫn:

    M(2;1) thuộc góc phần tư (I) nên A(a;a),\ \ a > 0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1;1),R = 1 ightarrow (C):(x - 1)^{2} + (y - 1)^{2}
= 1 \\
a = 5 ightarrow I(5;5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y -
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 6: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2} - 4x + 2y - 3 = 0 là:

    Hướng dẫn:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 2y - 3 = 0 ightarrow a = 2,\ b = - 1,\ c = -
3 \\
ightarrow I(2; - 1),\ R = \sqrt{4 + 1 + 3} = 2\sqrt{2}. \\
\end{matrix}

  • Câu 7: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 3y - 5 = 0, bán kính R = 2\sqrt{2} và tiếp xúc với đường thẳng \Delta:\ x - y - 1 = 0. Phương trình của đường tròn (C) là:

    Hướng dẫn:

    I \in d ightarrow I(5 - 3a;a)
ightarrow d\lbrack I;\Deltabrack = R = 2\sqrt{2} \Leftrightarrow
\frac{|4 - 4a|}{\sqrt{2}} = 2\sqrt{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 0 \\
a = 2 \\
\end{matrix} ight.\  ightarrow \left\lbrack \begin{matrix}
I(5;0) \\
I( - 1;2) \\
\end{matrix} ight.\ .

    Vậy các phương trình đường tròn là: (x -
5)^{2} + y^{2} = 8 hoặc (x + 1)^{2}
+ (y - 2)^{2} = 8.

  • Câu 8: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm (1) thuộc đường thẳng \Delta:x = 5 và tiếp xúc với hai đường thẳng d_{1}:3x–y + 3 = 0,d_{2}:x–3y + 9 =
0 có phương trình là:

    Hướng dẫn:

    Ta có:

    \begin{matrix}
I \in \Delta ightarrow I(5;a) ightarrow R = d\left\lbrack I;d_{1}
ightbrack = d\left\lbrack I;d_{2} ightbrack = \frac{|18 -
a|}{\sqrt{10}} = \frac{|14 - 3a|}{\sqrt{10}} \\
\Leftrightarrow \left\lbrack \begin{matrix}
a = 8 ightarrow I(5;8),\ R = \sqrt{10} \\
a = - 2 ightarrow I(5; - 2),\ R = 2\sqrt{10} \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình các đường tròn:

    (x - 5)^{2} + (y - 8)^{2} = 10 hoặc (x - 5)^{2} + (y + 2)^{2} =
40.

  • Câu 9: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):(x - 1)^{2} + (y + 3)^{2} = 16 là:

    Hướng dẫn:

    (C):(x - 1)^{2} + (y + 3)^{2} =
16\overset{}{ightarrow}I(1; - 3),\ \ R = \sqrt{16} = 4.

  • Câu 10: Nhận biết
    Tìm tọa độ tâm và bán kính

    Đường tròn (C):x^{2} + y^{2} - 6x + 2y + 6 = 0 có tâm I và bán kính R lần lượt là:

    Hướng dẫn:

    Ta có:\begin{matrix}
(C):x^{2} + y^{2} - 6x + 2y + 6 = 0 ightarrow a = \frac{- 6}{- 2} =
3,\ \ b = \frac{2}{- 2} = - 1,\ \ c = 6 \\
ightarrow I(3; - 1),\ R = \sqrt{3^{2} + ( - 1)^{2} - 6} = 2.\  \\
\end{matrix}

  • Câu 11: Thông hiểu
    Tính khoảng cách từ tâm đến trục hoành

    Cho đường tròn (C):x^{2} + y^{2} + 5x + 7y - 3 = 0. Tính khoảng cách từ tâm của (C) đến trục Ox.

    Hướng dẫn:

    (C):x^{2} + y^{2} + 5x + 7y - 3 = 0
ightarrow I\left( - \frac{5}{2}; - \frac{7}{2} ight)

    ightarrow d\lbrack I;Oxbrack = \left|
- \frac{7}{2} ight| = \frac{7}{2}.

  • Câu 12: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + (y + 4)^{2} = 5 là:

    Hướng dẫn:

    (C):x^{2} + (y + 4)^{2} =
5\overset{}{ightarrow}I(0; - 4),\ R = \sqrt{5}.

  • Câu 13: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):(x + 1)^{2} + y^{2} = 8 là:

    Hướng dẫn:

    (C):(x + 1)^{2} + y^{2} =
8\overset{}{ightarrow}I( - 1;0),\ R = \sqrt{8} =
2\sqrt{2}.

  • Câu 14: Thông hiểu
    Tìm khoảng cách từ tâm đường tròn đến trục tung

    Tâm của đường tròn (C):x^{2} + y^{2} - 10x + 1 = 0 cách trục Oy một khoảng bằng:

    Hướng dẫn:

    (C):x^{2} + y^{2} - 10x + 1 = 0
ightarrow I(5;0) ightarrow d\lbrack I;Oybrack = 5.

  • Câu 15: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua điểm M(2; - 1) và tiếp xúc với hai trục tọa độ Ox,\ Oy có phương trình là:

    Hướng dẫn:

    M(2; - 1) thuộc góc phần tư (IV) nên A(a; - a),\ \ a >
0.

    Khi đó: R = a^{2} = IM^{2} = (a - 2)^{2}
+ (a - 1)^{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = 1 ightarrow I(1; - 1),R = 1 ightarrow (C):(x - 1)^{2} + (y +
1)^{2} = 1 \\
a = 5 ightarrow I(5; - 5),\ R = 5 ightarrow (C):(x - 5)^{2} + (y +
5)^{2} = 25 \\
\end{matrix} ight.\ .

  • Câu 16: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I thuộc đường thẳng d:x + 2y - 2 = 0, bán kính R = 5 và tiếp xúc với đường thẳng \Delta:\ 3x - 4y - 11 = 0. Biết tâm I có hoành độ dương. Phương trình của đường tròn (C) là:

    Hướng dẫn:

    \begin{matrix}
I \in d ightarrow I(2 - 2a;a),\ \ a < 1 ightarrow d\lbrack
I;\Deltabrack = R = 5 \\
\Leftrightarrow \frac{|10a + 5|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
a = 2\ \ (l) \\
a = - 3 \\
\end{matrix} ight.\  ightarrow I(8; - 3) \\
\end{matrix}.

    Vậy phương trình đường tròn là: (x -
8)^{2} + (y + 3)^{2} = 25.

  • Câu 17: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn đường kính AB với A(1;1),B(7;5) có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I(4;3) \\
R = IA = \sqrt{(4 - 1)^{2} + (3 - 1)^{2}} = \sqrt{13} \\
\end{matrix} ight.

    ightarrow (C):(x - 4)^{2} + (y - 3)^{2}
= 13

    \Leftrightarrow x^{2} + y^{2} - 8x - 6y
+ 12 = 0.

  • Câu 18: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua điểm A(1; - 2) và tiếp xúc với đường thẳng \Delta:x - y + 1 = 0 tại M(1;2). Phương trình của đường tròn (C) là:

    Hướng dẫn:

    Tâm I của đường tròn nằm trên đường thẳng qua M vuông góc với \Delta là:

    \Delta':x + y - 3 = 0 ightarrow
I(a;3 - a).

    Ta có: R^{2} = IA^{2} = IM^{2} = (a -
1)^{2} + (a - 5)^{2} = (a - 1)^{2} + (a - 1)^{2}

    \Leftrightarrow a = 3 ightarrow \left\{
\begin{matrix}
I(3;0) \\
R^{2} = 8 \\
\end{matrix} ight.\  ightarrow (C):(x - 3)^{2} + y^{2} =
8.

  • Câu 19: Nhận biết
    Tìm tọa độ tâm và bán kính

    Đường tròn (C):x^{2} + y^{2} - 4x + 6y - 12 = 0 có tâm I và bán kính R lần lượt là:

    Hướng dẫn:

    \begin{matrix}
(C):x^{2} + y^{2} - 4x + 6y - 12 = 0 ightarrow a = 2,\ b = - 3,\ c = -
12 ightarrow I(2; - 3). \\
R = \sqrt{4 + 9 + 12} = 5.\  \\
\end{matrix}

  • Câu 20: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I thuộc đường thẳng x^{2} + y^{2} - 2ax - 2by + c = 0(1) và tiếp xúc với hai trục tọa độ có phương trình là:

    Hướng dẫn:

    \begin{matrix}
I \in d ightarrow I(12 - 5a;a) ightarrow R = d\lbrack I;Oxbrack =
d\lbrack I;Oybrack = |12 - 5a| = |a| \\
ightarrow \left\lbrack \begin{matrix}
a = 3 ightarrow I( - 3;3),\ R = 3 \\
a = 2 ightarrow I(2;2),\ R = 2 \\
\end{matrix} ight.\ . \\
\end{matrix}

    Vậy phương trình các đường tròn là :

    (x - 2)^{2} + (y - 2)^{2} = 4 hoặc (x + 3)^{2} + (y - 3)^{2} =
9.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 7 lượt xem
Sắp xếp theo