Luyện tập Ba đường conic (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 21 câu
  • Điểm số bài kiểm tra: 21 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính độ dài MN

    Cho (E):\frac{x^{2}}{20} + \frac{y^{2}}{16} =
1. Một đường thẳng đi qua điểm A(2;2) và song song với trục hoành cắt (E) tại hai điểm phân biệt MN. Độ dài MN bằng bao nhiêu?

    Hướng dẫn:

    Phương trình đường thẳng d đi qua điểm A(2;2) và song song trục hoành có phương trình là y = 2.

    Ta có d \cap (E) \Leftrightarrow \left\{
\begin{matrix}
\frac{x^{2}}{20} + \frac{y^{2}}{16} = 1 \\
y = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
\frac{x^{2}}{20} + \frac{2^{2}}{16} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
x^{2} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 2 \\
\left\lbrack \begin{matrix}
x = \sqrt{15} \\
x = - \sqrt{15} \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
M\left( \sqrt{15};\ 2 ight) \\
N\left( - \sqrt{15};\ 2 ight) \\
\end{matrix} ight.

    Vậy độ dài đoạn thẳng MN =
2\sqrt{15}.

  • Câu 2: Vận dụng
    Tìm tọa độ điểm M thỏa mãn

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Tìm điểm M trên (H) sao cho khoảng cách từ M đến đường thẳng \Delta:y = x + 1 đạt giá trị nhỏ nhất.

    Hướng dẫn:

    Gọi M\left( x_{0};y_{0} ight) \in
(H). Phương trình tiếp tuyến của (H) tại Md:\frac{x.x_{0}}{4} - y.y_{0} = 1.

    \Delta//d khi \frac{\frac{x_{0}}{4}}{1} = \frac{- y_{0}}{- 1}
\Rightarrow y_{0} = \frac{x_{0}}{4} thay vào (H) ta có:

    \frac{x_{0}^{2}}{4} - \left(
\frac{x_{0}}{4} ight)^{2} = 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x_{0} = \frac{4}{\sqrt{3}} ightarrow y_{0} = \frac{1}{\sqrt{3}} \\
x_{0} = - \frac{4}{\sqrt{3}} ightarrow y_{0} = - \frac{1}{\sqrt{3}} \\
\end{matrix} ight..

    Với M\left(
\frac{4}{\sqrt{3}};\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{1 +
\sqrt{3}}{\sqrt{2}}.

    Với M\left( - \frac{4}{\sqrt{3}}; -
\frac{1}{\sqrt{3}} ight) ta có : d(M, \bigtriangleup ) = \frac{\sqrt{3} -
1}{\sqrt{2}}.

  • Câu 3: Nhận biết
    Tìm phương trình chính tắc của elip

    Phương trình chính tắc của đường elip với a = 4, b = 3

    Hướng dẫn:

    Phương trình chính tắc (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1.

  • Câu 4: Vận dụng
    Tính độ dài trục nhỏ

    Elip (E) có độ dài trục lớn bằng 4\sqrt{2}, các đỉnh trên trục nhỏ và các tiêu điểm của elip cùng nằm trên một đường tròn. Hãy tính độ dài trục nhỏ của (E).

    Hướng dẫn:

    Ta có A_{1}A_{2} = 4\sqrt{2}\overset{}{ightarrow}a =
2\sqrt{2}

    Và bốn điểm F_{1},B_{1},F_{2},B_{2} cùng nằm trên một đường tròn

    \overset{}{ightarrow}b =
c\overset{}{ightarrow}b^{2} = c^{2}

    \overset{}{ightarrow}b^{2} = a^{2} -
b^{2}\overset{}{ightarrow}b = \frac{a}{\sqrt{2}} = 2.

    Vậy độ dài trục nhỏ của (E)4.

  • Câu 5: Thông hiểu
    Tìm phương trình chính tắc của elip

    Tìm phương trình chính tắc của Hyperbol (H) mà hình chữ nhật cơ sở có một đỉnh là (2; - 3).

    Hướng dẫn:

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1. Tọa độ đỉnh của hình chữ nhật cơ sở là A_{1}( - a; - b), A_{2}(a; - b), A_{3}(a;b), A_{4}( - a;b).

    Hình chữ nhật cơ sở của (H) có một đỉnh là (2; - 3), suy ra \left\{ \begin{matrix}
a = 2 \\
b = 3 \\
\end{matrix} ight.. Phương trình chính tắc của (H)\frac{x^{2}}{4} - \frac{y^{2}}{9} =
1.

  • Câu 6: Thông hiểu
    Tìm phương trình chính tắc của elip

    Elip có một tiêu điểm F( - 2;0) và tích độ dài trục lớn với trục bé bằng 12\sqrt{5}. Phương trình chính tắc của elip là:

    Hướng dẫn:

    Gọi (E) có dạng \frac{x^{2}}{a^{2}} +
\frac{y^{2}}{b^{2}} = 1.

    Theo giả thiết ta có: \left\{
\begin{matrix}
ab = 3\sqrt{5} \\
a^{2} - b^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 9 \\
b^{2} = 5 \\
\end{matrix} ight..

    Vậy (E) cần tìm là \frac{x^{2}}{9} +
\frac{y^{2}}{5} = 1.

  • Câu 7: Vận dụng
    Tính độ dài dây cung

    Dây cung của elip (E):\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1 (0 < b < a) vuông góc với trục lớn tại tiêu điểm có độ dài bằng:

    Hướng dẫn:

    Hai tiêu điểm có tọa độ lần lượt là F_{1}( - \ c;\ 0),\ \ F_{2}(c;\ 0).

    Đường thẳng chứa dây cung vuông góc với trục lớn (trục hoành ) tại tiêu điểm F có phương trình là \Delta:x = c.

    Suy ra \Delta \cap (E) \Leftrightarrow
\left\{ \begin{matrix}
\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
x = c \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
\frac{c^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y^{2} = \frac{b^{2}\left( a^{2} - c^{2} ight)}{a^{2}} =
\frac{b^{4}}{a^{2}} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = c \\
y = \pm \frac{b^{2}}{a} \\
\end{matrix} ight.

    Vậy tọa độ giao điểm của \Delta(E)M\left( c;\ \frac{b^{2}}{a} ight),\ \ N\left(
c;\  - \frac{b^{2}}{a} ight) \Rightarrow MN =
\frac{2b^{2}}{a}.

  • Câu 8: Thông hiểu
    Tìm phương trình chính tắc của elip

    Lập phương trình chính tắc của elip biết độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị, độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị.

    Hướng dẫn:

    Elip (E) có độ dài trục lớn hơn độ dài trục nhỏ 4 đơn vị \overset{}{ightarrow}2a - 2b = 4.

    Elip (E) có độ dài trục nhỏ hơn độ dài tiêu cự 4 đơn vị \overset{}{ightarrow}2b - 2c = 4.

    Ta có

    \left\{ \begin{matrix}
a - b = 2 \\
b - c = 2 \\
a^{2} = b^{2} + c^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a - b = 2 \\
a^{2} = b^{2} + (b - 2)^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
(b + 2)^{2} = 2b^{2} - 4b + 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = b + 2 \\
b^{2} - 8b = 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 10 \\
b = 8 \\
\end{matrix} ight.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{100} + \frac{y^{2}}{64} =
1.

  • Câu 9: Nhận biết
    Tính tiêu cự của elip

    Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):\frac{x^{2}}{25} +
\frac{y^{2}}{9} = 1. Tiêu cự của (E) bằng

    Hướng dẫn:

    Phương trình chính tắc của elip có dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1\ (a
> 0,b > 0).

    Do đó elip (E) có \left\{
\begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow c = \sqrt{a^{2} - b^{2}} =
4.

    Tiêu cự của elip (E) bằng 2c =
8.

  • Câu 10: Vận dụng
    Tìm tọa độ hai điểm P và Q

    Cho hyperbol (H):3x^{2} - 4y^{2} = 12 có hai tiêu điểm là F_{1},\ F_{2}. Tìm trên một nhánh của (H) tọa độ hai điểm P,\ Q . Biết rằng \Delta OPQ là tam giác đều.

    Hướng dẫn:

    Ta có : (H):3x^{2} - 4y^{2} = 12
\Leftrightarrow \frac{x^{2}}{4} - \frac{y^{2}}{3} = 1.

    Gọi P\left( x_{0};y_{0} ight) \in (H)
\Rightarrow Q\left( x_{0}; - y_{0} ight) (Do (H) đối xứng với nhau qua Ox)

    \Delta OPQ đều \Leftrightarrow OP = PQ

    \Leftrightarrow 4y_{0}^{2} = x_{0}^{2} +
y_{0}^{2} \Leftrightarrow x_{0}^{2} = 3y_{0}^{2}. Thay vào (H) ta có:

    9x_{0}^{2} - 4y_{0}^{2} = 12
\Leftrightarrow \left\lbrack \begin{matrix}
y_{0} = \frac{2\sqrt{15}}{5} \\
y_{0} = - \frac{2\sqrt{15}}{5} \\
\end{matrix} ight. \Rightarrow
x_{0} = \pm \frac{6\sqrt{5}}{5}.

    Vậy P\left(
\frac{6\sqrt{5}}{5};\frac{2\sqrt{15}}{5} ight), Q\left( \frac{6\sqrt{5}}{5}; -
\frac{2\sqrt{15}}{5} ight).

  • Câu 11: Vận dụng
    Tính độ dài MN

    Đường thẳng d:3x
+ 4y - 12 = 0 cắt elip (E):\frac{x^{2}}{16} + \frac{y^{2}}{9} =
1 tại hai điểm phân biệt MN. Hãy tính độ dài đoạn thẳng MN.

    Hướng dẫn:

    Tọa độ giao điểm của đường thẳng d(E) là nghiệm của hệ

    \left\{ \begin{matrix}
3x + 4y - 12 = 0 \\
\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
\frac{x^{2}}{16} + \frac{\left( 3 - \frac{3x}{4} ight)^{2}}{9} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
x^{2} - 4x = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 3 - \frac{3x}{4} \\
\left\lbrack \begin{matrix}
x = 0 \\
x = 4 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\ .

    Vậy tọa độ giao điểm là \left\{
\begin{matrix}
M(0;\ 3) \\
N(4;\ 0) \\
\end{matrix} ight.\  \Rightarrow MN = 5.

  • Câu 12: Vận dụng
    Tính tỉ số tiêu cự và độ dài trục lớn

    Cho elip (E) có hai đỉnh trên trục nhỏ cùng với hai tiêu điểm tạo thành một hình vuông. Tỉ số e của tiêu cự với độ dài trục lớn của (E) là bao nhiêu?

    Hướng dẫn:

    Ta có \widehat{F_{1}B_{1}F_{2}} =
90^{0}\overset{}{ightarrow}OB_{1} =
\frac{F_{1}F_{2}}{2}\overset{ightarrow}{}b = c

    \overset{}{ightarrow}b^{2} =
c^{2}\overset{}{ightarrow}\left( a^{2} - c^{2} ight) =
c^{2}

    \overset{}{ightarrow}\frac{c^{2}}{a^{2}} =
\frac{1}{2}\overset{}{ightarrow}\frac{c}{a} =
\frac{1}{\sqrt{2}}.

    Vậy e = \frac{1}{\sqrt{2}}.

  • Câu 13: Nhận biết
    Tìm phương trình chính tắc của elip

    Trong mặt phẳng tọa độ Oxy, viết phương trình chính tắc của elip biết một đỉnh là A_{1}( - 5;0) và một tiêu điểm là F_{2}(2;0).

    Hướng dẫn:

    Ta có a = 5;\ c = 2 \Rightarrow b^{2} =
25 - 4 = 21

    Vậy \frac{x^{2}}{25} + \frac{y^{2}}{21} =
1.

  • Câu 14: Thông hiểu
    Tìm phương trình chính tắc của elip

    Tìm phương trình chính tắc của elip nếu trục lớn gấp đôi trục bé và có tiêu cự bằng 4\sqrt{3}.

    Hướng dẫn:

    Elip (E) có trục lớn gấp đôi trục bé \Rightarrow A_{1}A_{2} = 2B_{1}B_{2}
\Leftrightarrow 2a = 2.2b \Leftrightarrow a = 2b.

    Elip (E) có tiêu cự bằng 4\sqrt{3}\overset{}{ightarrow}2c = 4\sqrt{3}
\Rightarrow c = 2\sqrt{3}.

    Ta có a^{2} = b^{2} + c^{2}
\Leftrightarrow (2b)^{2} = b^{2} + \left( 2\sqrt{3} ight)^{2}
\Rightarrow b = 2. Khi đó, a = 2b =
4.

    Phương trình chính tắc của Elip là (E):\frac{x^{2}}{16} + \frac{y^{2}}{4} =
1.

  • Câu 15: Thông hiểu
    Tìm phương trình chính tắc của elip

    Phương trình chính tắc của Elip có độ dài trục lớn bằng 8, độ dài trục nhỏ bằng 6 là:

    Hướng dẫn:

    + Phương trình Elip dạng: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1,a
> b > 0.

    + Do có độ dài trục lớn bằng 8 = 2a
\Rightarrow a = 4.

    + Do có độ dài trục nhỏ bằng 6 = 2b
\Rightarrow b = 3.

    + Suy ra phương trình là \frac{x^{2}}{16}
+ \frac{y^{2}}{9} = 1.

  • Câu 16: Nhận biết
    Tính diện tích hình chữ nhật cơ sở

    Cho elip (E):4x^{2} + 5y^{2} = 20. Diện tích hình chữ nhật cơ sở của (E)

    Hướng dẫn:

    (E):4x^{2} + 5y^{2} = 20 \Leftrightarrow
\frac{x^{2}}{5} + \frac{y^{2}}{4} = 1

    Độ dài trục lớn: 2a =
2\sqrt{5}.

    Độ dài trục bé: 2b = 2.2 =
4.

    Diện tích hình chữ nhật cơ sở của (E) là: 2\sqrt{5}.4 = 8\sqrt{5}.

  • Câu 17: Thông hiểu
    Tìm phương trình chính tắc của elip

    Cho elip (E) có độ dài trục lớn gấp hai lần độ dài trục nhỏ và tiêu cự bằng 6. Viết phương

    trình của (E)?

    Hướng dẫn:

    Ta có: a = 2b,2c = 6 \Rightarrow c =
3.

    a^{2} - b^{2} = c^{2} \Rightarrow
4b^{2} - b^{2} = 9 \Rightarrow \left\{ \begin{matrix}
b^{2} = 3 \\
a^{2} = 12 \\
\end{matrix} ight..

    Vậy phương trình (E): \frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{12}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{3}}\mathbf{=}\mathbf{1}.

  • Câu 18: Vận dụng
    Tìm tọa độ điểm M thỏa mãn

    Cho Hyperbol (H):\frac{x^{2}}{4} - y^{2} = 1. Hãy tìm tọa độ điểm M trên (H) thỏa mãn M thuộc nhánh phải và MF_{1} nhỏ nhất (ngắn nhất).

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = \sqrt{5} \\
\end{matrix} ight.\ .

    Gọi M\left( x_{0};y_{0} ight) \in
(H).

    Ta có: \frac{x^{2}}{4} - y^{2} = 1
\Leftrightarrow x^{2} = 4\left( y^{2} + 1 ight). M thuộc nhánh phải của (H) nên x_{0}
\geq 2.

    MF_{1} = 2 + \frac{2}{\sqrt{5}}x_{0} \geq
2 + \frac{4}{\sqrt{5}}. MF_{1} nhỏ nhất bằng \frac{4}{\sqrt{5}} khi M \equiv A(2;0).

  • Câu 19: Vận dụng
    Tính độ dài MN

    Cho elip (E):\frac{x^{2}}{100} + \frac{y^{2}}{36} =
1. Qua một tiêu điểm của (E) dựng đường thẳng song song với trục Oy và cắt (E) tại hai điểm MN. Độ dài MN bằng bao nhiêu?

    Hướng dẫn:

    Xét (E):\frac{x^{2}}{100} +
\frac{y^{2}}{36} = 1 \Rightarrow \left\{ \begin{matrix}
a^{2} = 100 \\
b^{2} = 36 \\
\end{matrix} ight.\  \Leftrightarrow c^{2} = a^{2} - b^{2} = 100 - 36
= 64.

    Khi đó, Elip có tiêu điểm là F_{1}( - \
8;0) \Rightarrow đường thẳng d//Oy và đi qua F_{1}x =
- \ 8.

    Giao điểm của d(E) là nghiệm của hệ phương trình

    \left\{ \begin{matrix}
x = - \ 8 \\
\frac{x^{2}}{100} + \frac{y^{2}}{36} = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \ 8 \\
y = \pm \ \frac{24}{5} \\
\end{matrix} ight.\ .

    Vậy tọa độ hai điểm M\left( - \
8;\frac{24}{5} ight),\ \ N\left( - \ 8; - \ \frac{24}{5} ight)
\Rightarrow MN = \frac{48}{5}.

  • Câu 20: Vận dụng
    Tìm phương trình chính tắc của Hyperbol

    Tìm phương trình chính tắc của Hyperbol (H). Cho biết (H) đi qua điểm (2;1) và có một đường chuẩn là x + \frac{2}{\sqrt{3}} =
0.

    Hướng dẫn:

    Gọi (H):\frac{x^{2}}{a^{2}} -
\frac{y^{2}}{b^{2}} = 1.

    Ta có : \left\{ \begin{matrix}
\frac{2^{2}}{a^{2}} - \frac{1^{2}}{b^{2}} = 1 \\
\frac{a^{2}}{c} = \frac{2}{\sqrt{3}} \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
b^{2} = \frac{a^{2}}{4 - a^{2}} \\
c^{2} = \frac{3}{4}a^{4} \\
\frac{a^{2}}{4 - a^{2}} = \frac{3}{4}a^{4} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a^{2} = 2,\ b^{2} = 1 \\
a^{2} = \frac{10}{3},\ b^{2} = 5 \\
\end{matrix} ight.\ . Suy ra phương trình chính tắc của (H) là \frac{x^{2}}{2} - y^{2} = 1.

  • Câu 21: Vận dụng
    Tìm phương trình đường tròn ngoại tiếp hình chữ nhật cơ sở

    Đường tròn ngoại tiếp hình chữ nhật cơ sở của hypebol \frac{x^{2}}{4} - y^{2} =
1 có có phương trình là:

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
\end{matrix} ight.. Tọa độ các đỉnh hình chữ nhật cở sở là (2;1), (2; - 1), ( -
2;1), ( - 2; - 1). Dường tròn ngoại tiếp hình chữ nhật cơ sở có tâm O(0;0) bán kính R = \sqrt{5}.

    Phương trình đường tròn là x^{2} + y^{2}
= 5.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (19%):
    2/3
  • Thông hiểu (29%):
    2/3
  • Vận dụng (52%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 4 lượt xem
Sắp xếp theo