Tập nghiệm của phương trình là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Tập nghiệm của phương trình là:
Xét phương trình: (1)
Điều kiện :
Thay x = 8 ta thấy (1) thoả mãn. Vậy, phương trình (1) có tập nghiệm là S = {8}.
Số nghiệm của phương trình là:
ĐK: x ∈ [5; 7]
Đặt t = x − 6 , t ∈ [ − 1; 1].
Phương trình trở thành .
Ta có VT(*) ≤ 4, VP(*) ≥ 4 nên (*) ⇔ VT(*) = VP(*) = 4 ⇔ t = 0 ⇒ x = 6(TM).
Vậy phương trình có một nghiệm.
Tất cả các giá trị của tham số m để phương trình có nghiệm là:
ĐKXĐ: x ≥ 1 .
Chia cả hai vế cho ta có
Đặt
Phương trình trở thành − 3t2 + 2t = m (*)
Xét hàm số y = − 3t2 + 2t trên [0; 1) , ta có ,
Bảng biến thiên
Phương trình ban đầu có nghiệm ⇔ phương trình (*) có nghiệm t∈ [0; 1)
⇔ đồ thị hàm số y = − 3t2 + 2t trên [0; 1) cắt đường thẳng
Vậy phương trình ban đầu có nghiệm khi và chỉ khi .
Số nghiệm của phương trình là:
ĐKXĐ: 2x(x2+1) ≥ 0 ⇔ x ≥ 0
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = 2x + x2 + 1 = (x+1)2
Phương trình trở thành a2 + b2 − 2ab = 0 ⇔ (a−b)2 = 0 ⇔ a = b
Suy ra (thỏa mãn)
Vậy phương trình có một nghiệm là x = 1 .
Tổng các bình phương của các nghiệm của phương trình bằng bao nhiêu?
Ta có
.
Tổng các bình phương của các nghiệm của phương trình là .
Số nghiệm của phương trình:là:
.
Vậy phương trình có một nghiệm.
Số nghiệm của phương trình là:
ĐKXĐ: x3 + 1 ≥ 0 ⇔ x ≥ − 1.
Phương trình
Đặt , a ≥ 0, b ≥ 0
Suy ra a2 + b2 = x2 + 2 khi đó
Phương trình trở thành
Với 3a = b ta có
(thỏa mãn điều kiện)
Với a = 3b ta có
⇔ 9x2 − 10x + 8 = 0 (phương trình vô nghiệm).
Vậy phương trình có nghiệm là .
Số nghiệm của phương trình là:
Đặt (t≥0).Phương trình trở thành:
Với t = 1 ta được .
Vậy phương trình có hai nghiệm.
Tính tổng bình phương các nghiệm của phương trính bằng:
ĐK:
.
Đặt , (t≥0)Phương trình thành
.
t = 1 ⇒ x2 − 2x − 1 = 0
.
Vậy phương trình đã cho có hai nghiệm là .
Tập nghiệm của phương trình là:
.
Vậy S = {2;4}.
Số nghiệm của phương trình là:
.
Vậy phương trình có 1 nghiệm.
Cho . Với m là bao nhiêu thì (1) có nghiệm duy nhất
ĐK x > 2
.
Phương trình (1) có nghiệm duy nhất .
Số nghiệm của phương trình là bao nhiêu?
Xét phương trình:
Điều kiện: .
Vậy phương trình vô nghiệm.
Tập nghiệm của phương trình là:
Phương trình .
Vậy S = {2}.
Số nghiệm của phương trình là:
vô số.
Ta thấy x = − 3 không là nghiệm của phương trình.
Xét x ≠ − 3, phương trình
Phương trình (*)
(thỏa mãn)
Vậy phương trình đã cho có hai nghiệm x = 0 và .
Phương trình có bao nhiêu nghiệm?
ĐKXĐ: .
Thay x = 1 vào , ta được:
.
Vậy phương trình vô nghiệm.
Số nghiệm của phương trình là:
.
Vậy phương trình vô nghiệm.
Tổng các nghiệm của phương trình là:
Đặt . Phương trình trở thành:
t3 − 2t + 4 = 0 ⇔ (t+2)(t2−2t+2) = 0 ⇔ t = − 2
Ta được
.
Tổng các nghiệm của phương trình là − 5.
Số nghiệm của phương trình là:
Xét phương trình:
Điều kiện:
Vậy phương trình vô nghiệm.
Số nghiệm của phương trình là:
Ta thấy không là nghiệm của phương trình
Xét , phương trình đã cho
Đến đây, chú ý
Nên phương trình có nghiệm phải thỏa mãn
Do đó phương trình đã cho
Nhưng x = − 1 không thoả mãn nên phương trình có nghiệm x = 1
* TH2:
(thỏa mãn)
Vậy phương trình có nghiệm duy nhất x = 1.