Luyện tập Đường tròn trong mặt phẳng tọa độ (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Viết phương trình tiếp tuyến của đường tròn

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} + 4x - 2y - 8 =
0, biết tiếp tuyến vuông góc với đường thẳng d:2x - 3y + 2018 = 0.

    Hướng dẫn:

    Đường tròn (C) có tâm I( - 2;1),\ R =
\sqrt{13} và tiếp tuyến có dạng

    \Delta:3x + 2y + c = 0.

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c - 4|}{\sqrt{13}} = \sqrt{13} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 17 \\
c = - 9 \\
\end{matrix} ight.\ .

  • Câu 2: Vận dụng
    Tìm số phương trình tiếp tuyến

    Có bao nhiêu đường thẳng đi qua gốc tọa độ O và tiếp xúc với đường tròn (C):x^{2} + y^{2} - 2x + 4y - 11 = 0?

    Hướng dẫn:

    Đường tròn (C) có tâm I(1; - 2),\ R = 4
ightarrow OI = \sqrt{5} < R ightarrowkhông có tiếp tuyến nào của đường tròn kẻ từ O.

  • Câu 3: Thông hiểu
    Tìm bán kính của đường tròn

    Tìm bán kính R của đường tròn đi qua ba điểm A(0;4), B(3;4), C(3;0).

    Hướng dẫn:

    \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 3;0) \\
\overrightarrow{BC} = (0; - 4) \\
\end{matrix} ight.\  ightarrow BA\bot BC ightarrow R =
\frac{AC}{2} = \frac{\sqrt{(3 - 0)^{2} + (0 - 4)^{2}}}{2} =
\frac{5}{2}.

  • Câu 4: Vận dụng
    Tìm phương trình đường tròn

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y - 1)^{2} = 25, biết tiếp tuyến song song với đường thẳng d:4x + 3y + 14 = 0.

    Hướng dẫn:

    Đường tròn (C) có tâm I(2;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ \ \left(ceq14 ight).

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c + 11|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 14\ (l) \\
c = - 36 \\
\end{matrix} ight.\ .

  • Câu 5: Vận dụng
    Tính khoảng cách từ điểm đến đường thẳng

    Cho đường tròn (C):(x + 1)^{2} + (y - 1)^{2} = 25 và điểm M(9; - 4). Gọi \Delta là tiếp tuyến của (C), biết \Delta đi qua M và không song song với các trục tọa độ. Khi đó khoảng cách từ điểm P(6;5) đến \Delta bằng:

    Hướng dẫn:

    Đường tròn (C) có tâm I( - 1;1),\ R =
5 và tiếp tuyến có dạng

    \Delta:ax + by - 9a + 4b = 0\ \ \left(abeq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|10a - 5b|}{\sqrt{a^{2} + b^{2}}} = 5
\Leftrightarrow a(3a - 4b) = 0

    \Leftrightarrow 3a = 4b ightarrow a =
4,\ b = 3 ightarrow \Delta:4x + 3y - 24 = 0.

    d\lbrack P;\Deltabrack = \frac{|24 + 15
- 24|}{5} = 3.

  • Câu 6: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):x^{2} + y^{2}–10x - 11 = 0 là:

    Hướng dẫn:

    (C):x^{2} + y^{2}–10x - 11 = 0
ightarrow I( - 5;0),\ R = \sqrt{25 + 0 + 11} = 6.

  • Câu 7: Nhận biết
    Tìm phương trình đường tròn

    Đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 25 có dạng khai triển là:

    Hướng dẫn:

    (C):(x - 1)^{2} + (y + 2)^{2} = 25
\Leftrightarrow x^{2} + y^{2} - 2x + 4y - 20 = 0.

  • Câu 8: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):16x^{2} + 16y^{2} + 16x - 8y - 11 = 0 là:

    Hướng dẫn:

    (C):16x^{2} + 16y^{2} + 16x - 8y - 11 =
0 \Leftrightarrow x^{2} + y^{2} + x - \frac{1}{2}y - \frac{11}{16} =
0.

    ightarrow \left\{ \begin{matrix}
I\left( - \frac{1}{2};\frac{1}{4} ight) \\
R = \sqrt{\frac{1}{4} + \frac{1}{16} + \frac{11}{16}} = 1. \\
\end{matrix} ight.

  • Câu 9: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I(2; - 3) và tiếp xúc với trục Oy có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I(2; - 3) \\
R = d\lbrack I;Oybrack = 2 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y + 3)^{2} =
4.

  • Câu 10: Vận dụng
    Tìm phương trình đường tròn

    Đường tròn (C) đi qua hai điểm A(–1;1)\ ,B(3;3) và tiếp xúc với đường thẳng d:3x–4y + 8 = 0. Viết phương trình đường tròn (C), biết tâm của (C) có hoành độ nhỏ hơn 5.

    Hướng dẫn:

    AB:x - 2y + 5 = 0, đoạn AB có trung điểm M(1;2) ightarrowtrung trực của đoạn AB là d:2x + y
- 4 = 0 ightarrow I(a;4 - 2a),\ \ a < 5.

    Ta có

    R = IA = d\lbrack I;\Deltabrack =
\sqrt{(a + 1)^{2} + (2a - 3)^{2}} = \frac{|11a - 8|}{5}

    \Leftrightarrow a = 3 ightarrow I(3; -
2),\ R = 5.

    Vậy phương trình đường tròn là: (x -
3)^{2} + (y + 2)^{2} = 25.

  • Câu 11: Vận dụng
    Viết phương trình tiếp tuyến của đường tròn

    Viết phương trình tiếp tuyến của đường tròn (C):(x - 2)^{2} + (y + 4)^{2} = 25, biết tiếp tuyến vuông góc với đường thẳng d:3x - 4y + 5 = 0.

    Hướng dẫn:

    Đường tròn (C) có tâm I(2; - 4),\ R =
5 và tiếp tuyến có dạng

    \Delta:4x + 3y + c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow \frac{|c - 4|}{5} = 5 \Leftrightarrow \left\lbrack
\begin{matrix}
c = 29 \\
c = - 21 \\
\end{matrix} ight.\ .

  • Câu 12: Nhận biết
    Tìm tọa độ tâm và bán kính

    Tọa độ tâm I và bán kính R của đường tròn (C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 là:

    Hướng dẫn:

    Ta có: \begin{matrix}
(C):2x^{2} + 2y^{2} - 8x + 4y - 1 = 0 \Leftrightarrow x^{2} + y^{2} - 4x
+ 2y - \frac{1}{2} = 0 \\
ightarrow \left\{ \begin{matrix}
a = 2,\ b = - 1 \\
c = - \frac{1}{2} \\
\end{matrix} ight.\  ightarrow I(2; - 1),\ R = \sqrt{4 + 1 +
\frac{1}{2}} = \frac{\sqrt{22}}{2}. \\
\end{matrix}

  • Câu 13: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I(
- 1;2) và tiếp xúc với đường thẳng \Delta:x–2y + 7 = 0 có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I( - 1;2) \\
R = d\lbrack I;\Deltabrack = \frac{| - 1 - 4 + 7|}{\sqrt{1 + 4}} =
\frac{2}{\sqrt{5}} \\
\end{matrix} ight.

    ightarrow (C):(x + 1)^{2} + (y - 2)^{2}
= \frac{4}{5}.

  • Câu 14: Vận dụng
    Tìm m thỏa mãn điều kiện

    Cho phương trình x^{2} + y^{2} - 2(m + 1)x + 4y - 1 =
0(1). Với giá trị nào của m để (1) là phương trình đường tròn có bán kính nhỏ nhất?

    Hướng dẫn:

    Ta có: x^{2} + y^{2} - 2(m + 1)x + 4y - 1
= 0 ightarrow \left\{ \begin{matrix}
a = m + 1 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.

    ightarrow R^{2} = a^{2} + b^{2} - c =
(m + 1)^{2} + 5 ightarrow R_{\min} = 5 \Leftrightarrow m = -
1.

  • Câu 15: Vận dụng
    Viết phương trình tiếp tuyến của đường tròn

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):(x - 1)^{2} + (y + 2)^{2} = 8, biết tiếp tuyến đi qua điểm A(5; -
2).

    Hướng dẫn:

    Đường tròn (C) có tâm I(1; - 2),\ R =
2\sqrt{2} và tiếp tuyến có dạng

    \Delta:ax + by - 5a + 2b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|4a|}{\sqrt{a^{2} + b^{2}}} = 2\sqrt{2}
\Leftrightarrow a^{2} - b^{2} = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
a = b ightarrow a = b = 1 \\
a = - b ightarrow a = 1,\ b = - 1 \\
\end{matrix} ight.\ .

  • Câu 16: Vận dụng
    Viết phương trình tiếp tuyến của đường tròn

    Viết phương trình tiếp tuyến của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 =
0, biết tiếp tuyến vuông góc với trục hoành.

    Hướng dẫn:

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng \Delta:x +
c = 0\ .

    Ta có R = d\lbrack I;\Deltabrack
\Leftrightarrow |c + 2| = 2 \Leftrightarrow \left\lbrack \begin{matrix}
c = 0 \\
c = - 4 \\
\end{matrix} ight.\ .

  • Câu 17: Vận dụng
    Viết phương trình tiếp tuyến của đường tròn

    Viết phương trình tiếp tuyến \Delta của đường tròn (C):x^{2} + y^{2} - 4x - 4y + 4 = 0, biết tiếp tuyến đi qua điểm B(4;6).

    Hướng dẫn:

    Đường tròn (C) có tâm I(2;2),\ R =
2 và tiếp tuyến có dạng

    \Delta:ax + by - 4a - 6b = 0\ \ \left(a^{2} + b^{2}eq0 ight).

    Ta có: d\lbrack I;\Deltabrack = R
\Leftrightarrow \frac{|2a + 4b|}{\sqrt{a^{2} + b^{2}}} = 2
\Leftrightarrow b(3b + 4a) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
b = 0 ightarrow a = 1,\ b = 0 \\
3b = - 4a ightarrow a = 3,\ b = - 4 \\
\end{matrix} ight.\ .

  • Câu 18: Thông hiểu
    Tìm tọa độ tâm đường tròn

    Tìm tọa độ tâm I của đường tròn đi qua ba điểm A(0;4), B(2;4), C(4;0).

    Hướng dẫn:

    A,\ B,\ C \in (C):x^{2} + y^{2} + 2ax +
2by + c = 0

    \Leftrightarrow \left\{ \begin{matrix}
16 + 8b + c = 0 \\
20 + 4a + 8b + c = 0 \\
16 + 8a + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
c = - 8 \\
\end{matrix} ight.\  ightarrow I(1;1).

  • Câu 19: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I(2;3) và tiếp xúc với trục Ox có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I(2;3) \\
R = d\lbrack I;Oxbrack = 3 \\
\end{matrix} ight.\  ightarrow (C):(x - 2)^{2} + (y - 3)^{2} =
9.

  • Câu 20: Thông hiểu
    Tìm phương trình đường tròn

    Đường tròn (C) có tâm I(
- 2;1) và tiếp xúc với đường thẳng \Delta:3x–4y + 5 = 0 có phương trình là:

    Hướng dẫn:

    (C):\left\{ \begin{matrix}
I( - 2;1) \\
R = d\lbrack I;\Deltabrack = \frac{| - 6 - 4 + 5|}{\sqrt{9 + 16}} = 1
\\
\end{matrix} ight.

    ightarrow (C):(x + 2)^{2} + (y - 1)^{2}
= 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (20%):
    2/3
  • Thông hiểu (30%):
    2/3
  • Vận dụng (50%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 1 lượt xem
Sắp xếp theo