Cho các chữ số . Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số khác nhau?
Số cách lập số tự nhiên có chữ số khác nhau từ các chữ số đã cho là số hoán vị của
phần tử, do đó có
.
Cùng luyện tập bài Hoán vị, chỉnh hợp và tổ hợp các em nhé!
Cho các chữ số . Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số khác nhau?
Số cách lập số tự nhiên có chữ số khác nhau từ các chữ số đã cho là số hoán vị của
phần tử, do đó có
.
Cho . Từ tập hợp này lập được bao nhiêu số tự nhiên có
chữ số đôi một khác nhau?
Mỗi số tự nhiên tự nhiên có chữ số khác nhau được lập từ tập
là hoán vị của
phần tử.
Vậy có số cần tìm.
Từ các chữ số 0, 1, 2, 5, 7, 9 lập được bao nhiêu số có năm chữ số khác nhau chia hết cho 6?
Gọi số cần tìm có dạng . Vì
chia hết cho 6 suy ra
TH1. Với suy ra
, do đó gồm các bộ
suy ra có 24 số.
TH2. Với suy ra
, do đó gồm các bộ
,
suy ra có 42 số.
Vậy có tất cả số cần tìm.
Cho tập . Hỏi lập được tất cả bao nhiêu số có 5 chữ số đôi một khác nhau và chia hết cho 2 từ tập A.
Gọi số cần tìm có dạng . Vì
chia hết cho 2 suy ra
.
TH1. Với , khi đó
số.
TH2. Với , khi đó có 4 cách chọn a, 4 cách chọn b, 3 cách chọn c, 2 cách chọn
.
Suy ra có số. Vậy có tất cả
số cần tìm.
Cho tập . Hỏi có thể lập được bao nhiêu số tự nhiên chẵn có 5 chữ số đôi một khác nhau sao cho số đó không bắt đầu bởi 125?
Gọi là số bắt đầu bởi 125 và có 5 chữ số đôi một khác nhau.
Suy ra có 3 cách chọn, a có 5 cách chọn
có
số.
Số các số chẵn có 5 chữ số đôi một khác nhau được lập từ tập A là số.
Suy ra có tất cả số cần tìm.
Có bao nhiêu cách sắp xếp học sinh thành một hàng dọc?
Số cách sắp xếp học sinh thành một hàng dọc là
.
Số cách xếp 5 học sinh ngồi vào một bàn dài là:
Ta có số cách xếp 5 học sinh vào một bàn dài là số các hoán vị của học sinh đó. Vậy kết quả là:
.
Cho tập hợp gồm
phần tử. Số các hoán vị của
phần tử của tập hợp
là bao nhiêu?
Số các hoán vị của phần tử:
.
Cho tập . Hỏi lập được bao nhiêu số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
Gọi là số số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
+ TH1. . Chọn
có 360 số.
+ TH2. Chọn
3 (cách).
Chọn 5 (cách).
Chọn
(cách).
có
số.
Vậy có. số tự nhiên có năm chữ số đôi một khác nhau và chia hết cho 2.
Số các số có chữ số khác nhau không bắt đầu bởi
được lập từ
là:
Lập số tự nhiên có chữ số khác nhau, ta tìm được:
số.
Lập số tự nhiên có chữ số khác nhau nhưng bắt đầu bằng
, ta tìm được:
số.
Vậy số các số có chữ số khác nhau không bắt đầu bởi
là
số.
Từ các số ,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên có
chữ số khác nhau đôi một?
Mỗi cách lập số tự nhiên có 5 chữ số khác nhau đôi một hoán vị của 5 phần tử.
Vậy có số cần tìm.
Cho các số ,
,
,
. Hỏi lập được bao nhiêu số tự nhiên có
chữ số với các số khác nhau lập từ các số đã cho?
Số các số tự nhiên có chữ số với các số khác nhau lập từ các số đã cho là:
số.
Cho các chữ số 0; 1; 2; 4; 5; 6; 8. Hỏi từ các chữ số trên lập được tất cả bao nhiêu số có 5 chữ số khác nhau chia hết cho 5 mà trong mỗi số chữ số 1 luôn xuất hiện?
Gọi số cần tìm có dạng . Vì
chia hết cho 5 suy ra
.
TH1. Với suy ra có
số cần tìm.
TH2. Với , suy ra có
số cần tìm.
Vậy có tất cả 444 số cần tìm.
Cho tập . Hỏi từ B lập được tất cả bao nhiêu số có 5 chữ số khác nhau và chia hết cho 3?
Gọi số cần tìm là số dạng . Vì
chia hết cho 3 suy ra
.
Khi đó bộ .
Với bộ suy ra có
số cần tìm.
Tương tự với các bộ số còn lại.
Cho các chữ số ,
,
,
,
,
. Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có
chữ số và các chữ số đôi một bất kỳ khác nhau?
Gọi số cần tìm là: (với
,
).
Trường hợp 1:
Chọn , nên có
cách chọn.
Chọn nên có
cách chọn.
Chọn có
cách chọn.
Chọn có
cách chọn.
Suy ra, có số.
Trường hợp 2:
Chọn , nên có
cách chọn.
Chọn nên có
cách chọn.
Chọn có
cách chọn.
Chọn có
cách chọn.
Suy ra, có số.
Vậy có tất cả: số.
Từ các chữ số ,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau trong đó hai chữ số
và
không đứng cạnh nhau.
Số các số có chữ số được lập từ các chữ số
,
,
,
,
,
là
.
Số các số có chữ số và
đứng cạnh nhau:
.
Số các số có chữ số và
không đúng cạnh nhau là:
.
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì
chia hết cho 10 suy ra
.
TH1. Với , ta có
+ Nếu suy ra
, do đó có 2 số cần tìm.
+ Nếu suy ra
và
, do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.
Từ các chữ số ,
,
,
,
. Hỏi có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau?
Mỗi số tự nhiên gồm chữ số khác nhau được lập từ các số
,
,
,
,
là một hoán vị của
phần tử đó. Nên số các số thỏa mãn yêu cầu bài toán là
(số).
Đội học sinh giỏi cấp trường môn Tiếng Anh của trường THPT X theo từng khối như sau: khối 10 có 5 học sinh, khối 11 có 5 học sinh và khối 12 có 5 học sinh. Nhà trường cần chọn một đội tuyển gồm 10 học sinh. Hỏi có bao nhiêu cách lập đội tuyển sao cho có học sinh cả 3 khối và có nhiều nhất 2 học sinh khối 10.
TH1. Có đúng 1 học sinh khối 10: (cách). (1 lớp 10 + 5 lớp 11 + 4 lớp 12 hoặc 1 lớp 10 + 5 lớp 12 + 4 lớp 11)
TH2. Có đúng 2 học sinh khối 10: (cách).
Có
cách lập đội tuyển sao cho có học sinh cả ba khối và có nhiều nhất 2 học sinh khối 10.
Xếp chữ số
,
,
,
,
,
thành hàng ngang sao cho hai chữ số giống nhau thì không xếp cạnh nhau. Hỏi có bao nhiêu cách sắp xếp như vậy?
Số cách xếp sáu chữ số thành hàng một cách tùy ý là .
*) Tìm số cách xếp sáu chữ số sao cho có hai chữ số giống nhau đứng cạnh nhau
+) TH1: Số cách xếp sao cho có hai chữ số đứng cạnh nhau
.
+) TH2: Số cách xếp sao cho có hai chữ số đứng cạnh nhau
.
+) TH3: Số cách xếp sao cho có hai chữ số đứng cạnh nhau và hai chữ số
đứng cạnh nhau
-) Nếu hai chữ số ở vị trí
và
ta có số cách xếp là
.
-) Nếu hai chữ số ở ba vị trí còn lại thì số các xếp là
.
Vậy số cách xếp hai chữ số giống nhau đứng cạnh nhau là .
Số cách xếp không có hai chữ số giống nhau nào đứng cạnh nhau là
.