Cho khai triển . Tìm hệ số
biết rằng
Ta có . Vậy
;
;
.
Theo bài ra nên ta có:
(thỏa mãn) hoặc
(loại).
Từ đó ta có .
Cho khai triển . Tìm hệ số
biết rằng
Ta có . Vậy
;
;
.
Theo bài ra nên ta có:
(thỏa mãn) hoặc
(loại).
Từ đó ta có .
Cho là số tự nhiên thỏa mãn phương trình
. Tìm hệ số của số hạng chứa
trong khai triển nhị thức Niu-tơn của
( với
).
Điều kiện và
.
(Vì
).
Khi đó ta có khai triển: .
Số hạng tổng quát của khai triển là .
Hệ số của số hạng chứa ứng với
thỏa mãn:
.
Vậy hệ số của số hạng chứa là:
.
Cho biết hệ số của trong khai triển
bằng
.Tìm
.
Ta có: .
Hệ số của trong khai triển bằng
Tìm hệ số của trong khai triển nhị thức Newton
với
, biết
là số tự nhiên lớn nhất thỏa mãn
.
Điều kiện:
Khi đó
.
Số hạng tổng quát trong khai triển là
.
Tìm sao cho
.
Vậy hệ số của số hạng chứa là
.
Tìm hệ số của trong khai triển
với
biết
là số nguyên dương thỏa mãn
Đk:
Với , nhị thức trở thành
Số hạng tổng quát là
Từ yêu cầu bài toán ta cần có:
Vậy hệ số của số hạng chứa là
.
Cho biết hệ số của trong khai triển
bằng
. Tìm
.
Ta có .
Hệ số của bằng
.
Vậy .
Tìm hệ số của số hạng chứa trong khai triển
, biết rằng
là số tổ hợp chập
của
phần tử).
Xét phương trình
Điều kiện:
Với ta có:
Số hạng tổng quát của khai triển là
Cho hệ số của số hạng chứa
trong khai triển là
.
Biết hệ số của trong khai triển của
là
. Tìm
.
Số hạng thứ trong khai triển của
là:
.
Số hạng chứa ứng với
.
Ta có: (với
;
)
. Vậy
.
Biết hệ số của số hạng chứa trong khai triển
là
. Số tự nhiên
bằng bao nhiêu?
Ta có: .
Hệ số của số hạng chứa là:
.
Giả thiết suy ra
Tìm hệ số của trong khai triển
biết
là :
Điều kiện:
Ta có :
.
Xét khai triển
.
Để số hạng chứa thì
.
Vậy hệ số chứa trong khai triển trên là
.
Tìm số hạng không chứa trong khai triển nhị thức Newton của
. Cho biết
(
là số tổ hợp chập
của
phần tử).
Xét khai triển
Đạo hàm hai vế của ta được:
Trong công thức ta cho
ta được:
.
Khi đó, .
Do đó số hạng không chứa trong khai triển
nếu
hay
.
Suy ra số hạng cần tìm là .
Cho khai triển với
. Tìm hệ số của số hạng chứa
trong khai triển trên.
Ta có: .
Số hạng chứa ứng với
. Vậy hệ số của số hạng chứa
bằng
.
Với là số nguyên dương thỏa mãn
. Trong khai triển biểu thức
, gọi
là số hạng mà tổng số mũ của
và
của số hạng đó bằng
. Hệ số của
là :
Điều kiện: ,
.
Ta có
.
.
.
Ta có: . Vậy hệ số
.
Số hạng thứ trong khai triển
bằng?
Ta có
Số hạng thứ trong khai triển tương ứng với
.
.
Hệ số của số hạng chứa trong khai triển Newton
là:
Số hạng tổng quát của khái triển
Số của số hạng chứa :
. Hệ số của số hạng chứa
.
Tìm hệ số của trong khai triển
Số hạng tổng quát của khai triển đã cho là
với ,
. Số hạng này chứa
khi và chỉ khi
(thỏa mãn).
Vậy hệ số của trong khai triển
là
.
Tìm số hạng chứa trong khai triển
. Cho biết
là số nguyên dương thỏa mãn hệ thức
.
Từ giả thiết ta suy ra .
Mặt khác: nên ta có:
Suy ra: .
Số hạng tổng quát trong khai triển là:
.
Hệ số của là
với
thỏa mãn:
.
Vậy hệ số của là
.
Cho là số tự nhiên thỏa mãn
. Tìm hệ số của
trong khai triển
.
Ta có
.
Xét khai triển
Tìm hệ số của tìm
thỏa mãn
.
Vậy hệ số của trong khai triển
là
.
Tìm hệ số của số hạng chứa
trong khai triển
.
Ta có:
Ta có: , suy ra
Vậy hệ số của số hạng chứa
trong khai triển
là
Cho là số nguyên dương thỏa mãn
. Tìm hệ số của số hạng chứa
của khai triển biểu thức
.
.
Khi đó .
Công thức số hạng tổng quát: .
Số hạng chứa .
Vậy hệ số của số hạng chứa trong khai triển là
.