Luyện tập Hàm số bậc hai (Khó)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 19 câu
  • Điểm số bài kiểm tra: 19 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Chọn khẳng định đúng

    Tìm khẳng định đúng trong các khẳng định sau?

    Hướng dẫn:

    * Theo định nghĩa tam thức bậc hai thì f(x) = 3x2 + 2x − 5 là tam thức bậc hai.

  • Câu 2: Vận dụng cao
    Tìm m thỏa mãn điều kiện

    Cho parabol (P) : y = x2 − 4x + 3 và đường thẳng d : y = mx + 3. Tìm tất cả các giá trị thực của m để d cắt (P) tại hai điểm phân biệt A,  B sao cho diện tích tam giác OAB bằng \frac{9}{2}.

    Hướng dẫn:

    Phương trình hoành độ giao điểm của (P)dx2 − 4x + 3 = mx + 3

    \overset{}{\leftrightarrow}x\left( x - (m
+ 4) ight) = 0\overset{}{\leftrightarrow}\left\{ \begin{matrix}
x = 0 \\
x = m + 4 \\
\end{matrix} ight..

    Để d cắt (P) tại hai điểm phân biệt A,  B khi và chỉ khi 4 + m ≠ 0 ⇔ m ≠  − 4.

    Với x = 0 \Rightarrow y = 3\ \ \ \
\overset{}{ightarrow}\ \ \ \ A(0;3) \in Oy.

    Với x = 4 + m \Rightarrow y = m^{2} + 4m +
3\ \ \ \ \overset{}{ightarrow}\ \ \ \ B\left( 4 + m;m^{2} + 4m + 3
ight).

    Gọi H là hình chiếu của B lên OA. Suy ra BH = |xB| = |4+m|.

    Theo giả thiết bài toán, ta có S_{\Delta
OAB} = \frac{9}{2} \Leftrightarrow \frac{1}{2}OA.BH = \frac{9}{2}
\Leftrightarrow \frac{1}{2}.3.|m + 4| = \frac{9}{2}

    \Leftrightarrow |m + 4| = 3
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 1 \\
m = - 7 \\
\end{matrix} ight..

  • Câu 3: Vận dụng
    Tính giá trị P

    Biết rằng hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} và tổng lập phương các nghiệm của phương trình y = 0 bằng 9. Tính P = abc.

    Hướng dẫn:

    Hàm số y = ax2 + bx + c(a≠0) đạt giá trị lớn nhất bằng \frac{1}{4} tại x = \frac{3}{2} nên ta có - \frac{b}{2a} = \frac{3}{2} và điểm \left( \frac{3}{2};\frac{1}{4} ight) thuộc đồ thị \Rightarrow \frac{9}{4}a +
\frac{3}{2}b + c = \frac{1}{4}.

    Gọi x1, x2 là hai nghiệm của phương trình y = 0. Theo giả thiết: x13 + x23 = 9

    \Leftrightarrow \left( x_{1} + x_{2}
ight)^{3} - 3x_{1}x_{2}\left( x_{1} + x_{2} ight) =
9\overset{Viet}{ightarrow}\left( - \frac{b}{a} ight)^{3} - 3\left( -
\frac{b}{a} ight)\left( \frac{c}{a} ight) = 9.

    Từ đó ta có hệ \left\{ \begin{matrix}
- \frac{b}{2a} = \frac{3}{2} \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\left( - \frac{b}{a} ight)^{3} - 3\left( - \frac{b}{a} ight)\left(
\frac{c}{a} ight) = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b = - 3a \\
\frac{9}{4}a + \frac{3}{2}b + c = \frac{1}{4} \\
\frac{c}{a} = 2 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = - 1 \\
b = 3 \\
c = - 2 \\
\end{matrix} ight.\ \overset{}{ightarrow}P = abc = 6.

  • Câu 4: Thông hiểu
    Tìm giá trị lớn nhất

    Giá trị lớn nhất của hàm số f(x) = \frac{2}{x^{2} - 5x + 9} bằng:

    Hướng dẫn:

    Ta có x^{2} - 5x + 9 = \left( x -
\frac{5}{2} ight)^{2} + \frac{11}{4} \geq \frac{11}{4} \Rightarrow
\frac{2}{x^{2} - 5x + 9} \leq \frac{2}{\frac{11}{4}} =
\frac{8}{11}

    \frac{2}{x^{2} - 5x + 9} = \frac{8}{11}
\Leftrightarrow x = \frac{5}{2}

    Vậy giá trị lớn nhất của hàm số f(x) =
\frac{2}{x^{2} - 5x + 9} bằng \frac{8}{11}.

  • Câu 5: Nhận biết
    Tìm trục đối xứng

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng có phương trình

    Hướng dẫn:

    Trục đối xứng của parabol y = ax2 + bx + c là đường thẳng x = -
\frac{b}{2a}.

    Trục đối xứng của parabol y =  − x2 + 5x + 3 là đường thẳng x = \frac{5}{2}.

  • Câu 6: Vận dụng cao
    Tìm m thỏa mãn điều kiện

    Cho hàm số f(x) = ax2 + bx + c có đồ thị như hình vẽ bên. Tìm tất cả các giá trị thực của tham số m để phương trình f(x) + m − 2018 = 0 có duy nhất một nghiệm.

    Hướng dẫn:

    Phương trình f(x) + m - 2018 =
0\overset{}{\leftrightarrow}f(x) = 2018 - m. Đây là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = 2018 − m (có phương song song hoặc trùng với trục hoành).

    Dựa vào đồ thị, ta có ycbt 2018 − m = 2 ⇔ m = 2016.

  • Câu 7: Vận dụng cao
    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của tham số m để phương trình x2 − 5x + 7 + 2m = 0 có nghiệm thuộc đoạn [1; 5].

    Hướng dẫn:

    Ta có x2 − 5x + 7 + 2m = 0 ⇔ x2 − 5x + 7 =  − 2m. (*)

    Phương trình (*) là phương trình hoành độ giao điểm của parabol (P) : x2 − 5x + 7 và đường thẳng y =  − 2m (song song hoặc trùng với trục hoành).

    Ta có bảng biến thiên của hàm số y = x2 − 5x + 7 trên [1; 5] như sau:

    Dựa vào bảng biến ta thấy x ∈ [1; 5] thì y \in \left\lbrack \frac{3}{4};7
ightbrack.

    Do đo để phương trình (*) có nghiệm x \in \lbrack 1;5brack \Leftrightarrow
\frac{3}{4} \leq - 2m \leq 7 \Leftrightarrow - \frac{3}{8} \geq m \geq -
\frac{7}{2}.

  • Câu 8: Vận dụng
    Tìm m thỏa mãn điều kiện

    Tìm tất cả các giá trị thực của m để phương trình x4 − 2x2 + 3 − m = 0 có nghiệm.

    Hướng dẫn:

    Đặt t = x2    (t≥0).

    Khi đó, phương trình đã cho trở thành: t2 − 2t + 3 − m = 0. (*)

    Để phương trình đã cho có nghiệm khi và chỉ khi (*) có nghiệm không âm.

    Phương trình (*) vô nghiệm khi và chỉ khi Δ′ < 0 ⇔ m − 2 < 0 ⇔ m < 2.

    Phương trình (*) có 2 nghiệm âm khi và chỉ khi \left\{ \begin{matrix}
\Delta' = m - 2 \geq 0 \\
S = 2 < 0 \\
P = 3 - m > 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \varnothing.

    Do đó, phương trình (*) có nghiệm không âm khi và chỉ khi m ≥  − 2.

  • Câu 9: Thông hiểu
    Tính chiều cao h của Parabol

    Một chiếc cổng hình parabol có phương trình y = - \frac{1}{2}x^{2}. Biết cổng có chiều rộng d = 5 mét (như hình vẽ). Hãy tính chiều cao h của cổng.

    Hướng dẫn:

    Gọi ABlà hai điểm ứng với hai chân cổng như hình vẽ.

    Vì cổng hình parabol có phương trình y = -
\frac{1}{2}x^{2}và cổng có chiều rộng d = 5 mét nên:

    AB = 5 A\left( - \frac{5}{2}; - \frac{25}{8} ight);\
B\left( \frac{5}{2}; - \frac{25}{8} ight).

    Vậy chiều cao của cổng là\left| -
\frac{25}{8} ight| = \frac{25}{8} = 3,125mét.

  • Câu 10: Vận dụng
    Tìm m thỏa mãn điều kiện

    Hỏi có bao nhiêu giá trị m nguyên trong nửa khoảng [ − 10;  − 4) để đường thẳng d : y =  − (m+1)x + m + 2 cắt Parabol (P) : y = x2 + x − 2 tại hai điểm phân biệt cùng phía với trục tung?

    Hướng dẫn:

    Xét phương trình:  − (m+1)x + m + 2 = x2 + x − 2 ⇔ x2 + x(m+2) − m − 4 = 0

    Để đường thẳng d cắt Parabol(P) tại hai điểm phân biệt cùng phía với trục tung vậy điều kiện là \left\{ \begin{matrix}
\Delta > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 2)^{2} + 4(m + 4) > 0 \\
- m - 4 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m^{2} + 8m + 20 > 0\ ,\ \forall m \\
m < - 4 \\
\end{matrix} ight.

    Vậy trong nửa khoảng[ − 10;  − 4)6 giá trị nguyên m.

  • Câu 11: Nhận biết
    Tìm parabol thỏa mãn điều kiện

    Tìm parabol (P) : y = ax2 + 3x − 2, biết rằng parabol có trục đối xứng x =  − 3.

    Hướng dẫn:

    Trục đối xứng của (P) có dạng:

    x = - \frac{b}{2a} = - 3 \Leftrightarrow -
\frac{3}{2a} = - 3 \Leftrightarrow - 3 = - 6a \Leftrightarrow a =
\frac{1}{2}.

    Vậy (P) có phương trình: y = \frac{1}{2}x^{2} + 3x - 2.

  • Câu 12: Vận dụng
    Tìm tọa độ trung điểm I

    Biết đường thẳng d : y = mx cắt Parabol (P) : y = x2 − x + 1 tại hai điểm phân biệt A, B. Khi đó tọa độ trung điểm I của đoạn thẳng AB

    Hướng dẫn:

    Xét phương trình hoành độ giao điểm của d(P):

    mx = x2 − x + 1 ⇔ x2 − (m+1)x + 1 = 0

    Vì hoành độ giao điểm xA, xB là hai nghiệm của phương trình nên ta có tọa độ trung điểm I\left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{y_{A} + y_{B}}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{x_{A} + x_{B}}{2} \\
y_{I} = \frac{m\left( x_{A} + x_{B} ight)}{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{m + 1}{2} \\
y_{I} = \frac{m^{2} + m}{2} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1 + m}{2};\frac{m^{2} +
m}{2} ight).

  • Câu 13: Nhận biết
    Tìm hàm số thỏa mãn điều kiện

    Đồ thị của hàm số nào sau đây là parabol có đỉnh I(−1; 3).

    Hướng dẫn:

    Đỉnh Parabol là I\left( -
\frac{b}{2a};\  - \frac{\Delta}{4a} ight) = \left( - \frac{b}{2a};\  -
\frac{b^{2} - 4ac}{4a} ight).

    Do đó chỉ có đáp án y = 2x2 + 4x + 5 thỏa mãn.

  • Câu 14: Thông hiểu
    Tìm công thức hàm số bậc hai

    Đồ thị hình bên dưới là đồ thị của hàm số nào?

    Hướng dẫn:

    Đồ thị cắt trục tung tại điểm có tung độ bằng 1.

    Đồ thị cắt trục hoành tại điểm có hoành độ bằng 1, phương trình hoành độ giao điểm phải có nghiệm x = 1, ta chỉ có phương trình 2x^{2} - 3x + 1 = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = \frac{1}{2} \\
\end{matrix} ight..

  • Câu 15: Thông hiểu
    Tìm công thức hàm số bậc hai

    Xác định parabol (P): y = ax2 + bx + c, a ≠ 0 biết (P) cắt trục tung tại điểm có tung độ bằng 1 và có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2}.

    Hướng dẫn:

    Ta có (P) cắt trục tung tại điểm có tung độ bằng 1: Khi x = 0 thì y = 1 c = 1.

    (P)có giá trị nhỏ nhất bằng \frac{3}{4} khi x = \frac{1}{2} nên:

    \left\{ \begin{matrix}
y\left( \frac{1}{2} ight) = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight. \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b + 1 = \frac{3}{4} \\
\frac{- b}{2a} = \frac{1}{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\frac{1}{4}a + \frac{1}{2}b = - \frac{1}{4} \\
a + b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = - 1 \\
\end{matrix} ight..

    Vậy (P): y = x2 − x + 1.

  • Câu 16: Vận dụng
    Tìm m thỏa mãn điều kiện

    Cho hai hàm số y1 = x2 + (m−1)x + m, y2 = 2x + m + 1. Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì m có giá trị là

    Hướng dẫn:

    Phương trình hoành độ giao điểm: x2 + (m−1)x + m = 2x + m + 1 ⇔ x2 + (m−3)x − 1 = 0  (1).

    Khi đồ thị hai hàm số cắt nhau tại hai điểm phân biệt thì pt(1) có hai nghiệm phân biệt

     ⇔ Δ = (m−3)2 + 4 > 0 luôn đúng m ∈ ℝ.

  • Câu 17: Thông hiểu
    Tìm m thỏa mãn điều kiện

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [ − 7; 7] để phương trình mx2 − 2(m+2)x + m − 1 = 0 có hai nghiệm phân biệt?

    Hướng dẫn:

    TH1:m = 0 \Leftrightarrow - 4x - 1 = 0
\Leftrightarrow x = - \frac{1}{4}; phương trình chỉ có một nghiệm duy nhất nên loại m = 0

    TH2: m ≠ 0

    Để mx2 − 2(m+2)x + m − 1 = 0với m ∈ [ − 7; 7]có hai nghiệm phân biệt thì

    \Delta' = (m + 2)^{2} - m(m - 1) > 0
\Leftrightarrow 5m > - 4 \Leftrightarrow m > -
\frac{4}{5}đồng thời m ∈ [ − 7; 7].

    Vậy m = {1; 2;3;4;5;6;7}→7 giá trị nguyên của m thỏa mãn.

  • Câu 18: Nhận biết
    Tìm trục đối xứng

    Parabol y =  − x2 + 2x + 3 có phương trình trục đối xứng là

    Hướng dẫn:

    Parabol y =  − x2 + 2x + 3 có trục đối xứng là đường thẳng x = -
\frac{b}{2a}  ⇔ x = 1.

  • Câu 19: Vận dụng cao
    Tìm m thỏa mãn điều kiện

    Cho hàm số f(x) = ax2 + bx + c đồ thị như hình bên. Hỏi với những giá trị nào của tham số thực m thì phương trình |f(x)| = m có đúng 4 nghiệm phân biệt.

    Hướng dẫn:

    Ta có y = \left| f(x) ight| = \left\{
\begin{matrix}
f(x) & ;f(x) \geq 0 \\
- f(x) & ;f(x) < 0 \\
\end{matrix} ight.. Từ đó suy ra cách vẽ đồ thị hàm số (C) từ đồ thị hàm số y = f(x) như sau:

    Giữ nguyên đồ thị y = f(x) phía trên trục hoành.

    Lấy đối xứng phần đồ thị y = f(x) phía dưới trục hoành qua trục hoành ( bỏ phần dưới ).

    Kết hợp hai phần ta được đồ thị hàm số y = |f(x)| như hình vẽ.

    Phương trình |f(x)| = m là phương trình hoành độ giao điểm của đồ thị hàm số y = |f(x)| và đường thẳng y = m (song song hoặc trùng với trục hoành).

    Dựa vào đồ thị, ta có ycbt  ⇔ 0 < m < 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (26%):
    2/3
  • Thông hiểu (26%):
    2/3
  • Vận dụng (26%):
    2/3
  • Vận dụng cao (21%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 3 lượt xem
Sắp xếp theo