Luyện tập Hoán vị, chỉnh hợp và tổ hợp (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Một cửa hàng có 3 gói bim bim và 5 cốc mì ăn liền cần xếp vào giá. Hỏi có bao nhiêu cách xếp sao cho đầu hàng và cuối hàng cùng một loại?

    Hướng dẫn:

    Đối với bài toán ta xét 2 trường hợp.

    +) Đầu hàng và cuối hàng đều là gói bim bim. Số cách chọn 2 gói bim bim xếp ở vị trí đầu hàng và cuối hàng là. A_{3}^{2} (ở đây ta xem cách xếp 1 gói bim bim A ở đầu hàng, gói bim bim B ở cuối hàng với cách xếp gói bim bim A ở cuối hàng còn gói bim bim B ở đầu hàng là khác nhau). Lúc này, ta còn lại 1 gói bim bim và 5 cốc mì ăn liền, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{3}^{2}.6!

    +) Đầu hàng và cuối hàng đều là cốc mì ăn liền. Số cách chọn 2 cốc mì ăn liền xếp ở vị trí đầu hàng và cuối hàng là. A_{5}^{2}. Lúc này, còn lại 3 cốc mì ăn liền và 3 gói bim bim, số cách xếp 6 món đồ này vào 1 hàng là. 6!. Vậy số cách xếp thỏa yêu cầu đề là. A_{6}^{2}.6!

    \Rightarrow Số cách xếp tất cả là. 6!\left( A_{3}^{2} + A_{5}^{2} ight) =
18720.

  • Câu 2: Thông hiểu
    Tính tổng tất cả các số thuộc tập S

    Gọi S là tập hợp tất cả các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ các chữ số 5,\ 6,\ 7,\ 8,9. Tính tổng tất cả các số thuộc tập S.

    Hướng dẫn:

    Số các số tự nhiên gồm 5 chữ số đôi một khác nhau được lập từ 5,6,7,8,9 là 5! = 120 số.

    Vì vai trò các chữ số như nhau nên mỗi chữ số 5,6,7,8,9 xuất hiện ở hàng đơn vị là 4! = 24 lần.

    Tổng các chữ số ở hàng đơn vị là 24(5 + 6+ 7 + 8 + 9) = 840.

    Tương tự thì mỗi lần xuất hiện ở các hàng chục, trăm, nghìn, chục nghìn của mỗi chữ số là 24 lần.

    Vậy tổng các số thuộc tập S là 840\left( 1 + 10 + 10^{2} + 10^{3} + 10^{4}ight) = 9333240.

  • Câu 3: Nhận biết
    Hỏi có bao nhiêu cách sắp xếp

    Tính số cách sắp xếp 6 nam sinh và 4 nữ sinh vào một dãy ghế hàng ngang có 10 chỗ ngồi. Biết rằng các nữ sinh luôn ngồi cạnh nhau.

    Hướng dẫn:

    Sắp xếp 4 nữ sinh vào 4 ghế. 4! cách.

    Xem 4 nữ sinh lập thành nhóm X, sắp xếp nhóm X cùng với 6 nam sinh. có 7! cách

    vậy có 7! \times 4! cách sắp xếp.

  • Câu 4: Vận dụng
    Số cách chọn thỏa mãn là

    Từ 20 người cần chọn ra một đoàn đại biểu gồm 1 trưởng đoàn, 1 phó đoàn, 1 thư kí và 3 ủy viên. Số cách chọn thỏa mãn là:

    Hướng dẫn:

    Số cách chọn 1 người trong 20 người làm trưởng đoàn là. C_{20}^{1} cách.

    Số cách chọn 1 người trong 19 người còn lại làm phó đoàn là. C_{19}^{1} cách.

    Số cách chọn 1 người trong 18 người còn lại làm thư kí là. C_{18}^{1} cách.

    Số cách chọn 3 người trong 17 người còn lại làm ủy viên là. C_{17}^{3} cách.

    Vậy số cách chọn đoàn đại biểu là C_{20}^{1} \times C_{19}^{1} \times C_{18}^{1}
\times C_{17}^{3} = 4651200.

  • Câu 5: Vận dụng
    Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ?

    Có 5 học sinh nam và 3 học sinh nữ xếp thành một hàng dọc. Hỏi có bao nhiêu cách xếp để 2 học sinh nam xen giữa 3 học sinh nữ? (Biết rằng cứ đổi 2 học sinh bất kì được cách mới)

    Hướng dẫn:

    Xếp cố định 3 học sinh nữ vào hàng trước, có 3! cách xếp. Chọn 2 học sinh nam bất kì cho vào 2 khoảng trống nằm giữa 2 học sinh nữ, số cách chọn là A_{5}^{2}. Xem nhóm 5 học sinh này là 1 học sinh, lúc này còn 3 học sinh nam vậy là ta đang có 4 học sinh. Số cách xếp 4 học sinh này thành hàng dọc là 4!. Vậy số cách xếp cần tìm là. 3!.A_{5}^{2}.4! =
2880.

  • Câu 6: Vận dụng
    Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Đội văn nghệ của nhà trường gồm 4 học sinh lớp 12A, 3 học sinh lớp 12B và 2 học sinh lớp 12C. Chọn ngẫu nhiên 5 học sinh từ đội văn nghệ. Hỏi có bao nhiêu cách chọn sao cho lớp nào cũng có học sinh được chọn?

    Hướng dẫn:

    Tổng số học sinh trong đội văn nghệ của nhà trường là 9 học sinh.

    Số cách chọn 5 học sinh bất kì trong 9 học sinh là. C_{9}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12A là. C_{5}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12B là. C_{6}^{5} cách.

    Số cách chọn 5 học sinh mà trong đó không có học sinh lớp 12C là. C_{7}^{5} cách.

    Vậy có C_{9}^{5} - \left( C_{5}^{5} +
C_{6}^{5} + C_{7}^{5} ight) = 98 cách thỏa mãn yêu cầu bài toán.

  • Câu 7: Vận dụng
    Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Hướng dẫn:

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 8: Nhận biết
    Hỏi có bao nhiêu cách sắp xếp

    Có 1 con mèo vàng, 1 con mèo đen, 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím. Xếp 6 con mèo thành hàng ngang vào 6 cái ghế sao cho mỗi ghế chỉ có một con mèo. Đếm số cách xếp chỗ sao cho mèo vàng và mèo đen ở cạnh nhau.

    Hướng dẫn:

    Số cách xếp con mèo vàng và con mèo đen ở cạnh nhau là 2.

    Xem nhóm con mèo vàng và đen này là một phần tử, cùng với 1 con mèo nâu, 1 con mèo trắng, 1 con mèo xanh, 1 con mèo tím, ta được 5 phần tử. Xếp 5 phần tử này là. 5!

    Vậy có 2.5! = 240.

  • Câu 9: Vận dụng
    Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Cho các chữ số 0, 1, 2, 3, 4, 5, 8. Hỏi lập được bao nhiêu số có ba chữ số khác nhau, chia hết cho 2 và 3?

    Hướng dẫn:

    Chữ số cuối cùng bằng 0; các cặp số có thể xảy ra là (1;2),(1;5),(1;8),(2;4),(4;5),(4;8).

    Trường hợp này có 2!.6 số.

    Chữ số cuối bằng 2 ta có các bộ (1;0),(4;0),(1;3),(3;4),(5;8), hoán vị được 2!.3 + 2 số.

    Chữ số cuối bằng 4 ta có các bộ (2;0),(2;3),(3;5),(3;8), hoán vị được 2!.3 + 1 số.

    Chữ số cuối bằng 8 ta có các bộ (0;1),(0;4),(1;3),(2;5),(3;4), hoán vị được 2!.3 + 2 số.

    Kết hợp lại ta có 35 số.

  • Câu 10: Nhận biết
    Hỏi có bao nhiêu cách sắp xếp

    6 học sinh và 2 thầy giáo được xếp thành hàng ngang. Đếm số cách xếp sao cho hai thầy giáo không đứng cạnh nhau?

    Hướng dẫn:

    Xếp 8 người thành hàng ngang có P_{8} cách.

    Xếp 8 người thành hàng ngang sao cho 2 thầy giáo đứng cạnh nhau có 7.2!.6! cách.

    Vậy số cách xếp cần tìm là. P_{8} -
7.2!.6! = 30240 cách.

  • Câu 11: Vận dụng
    Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Cho các chữ số 0, 1, 2, 3, 4, 5, 6, 7. Từ các chữ số này có thể lập được bao nhiêu số có ba chữ số khác nhau chứa chữ số 2 và chia hết cho 5?

    Hướng dẫn:

    Giả sử số đó là \overline{a_{1}a_{2}a_{3}}

    Trường hợp 1. a_{3} = 0 xếp 2 vào có 2 vị trí, chọn số xếp vào vị trí còn lại có 6 cách nên có 2.6 = 12 số thỏa mãn.

    Trường hợp 2. a_{3} = 5. Với a_{1} = 2 chọn a_{2} có 6 cách nên có 6 số thỏa mãn. Với a_{1} eq 2 chọn a_{1} có 5 cách chọn, và tất nhiên a_{2} = 2 nên có 5 số thỏa mãn. Do đó có 12 + 6 + 5 = 23 số thỏa mãn.

  • Câu 12: Thông hiểu
    Hỏi có thể lập được bao nhiêu số

    Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên lẻ có 6 chữ số khác nhau và trong mỗi số đó tổng của ba chữ số đầu lớn hơn tổng của ba chữ số cuối một đơn vị?

    Hướng dẫn:

    Gọi \overline{a_{1}a_{2}a_{3}a_{4}a_{5}a_{6}} là số cần tìm

    Ta có a_{6} \in \left\{ 1;\ 3;\ 5ight\}\left( a_{1} + a_{2} +a_{3} ight) - \left( a_{4} + a_{5} + a_{6} ight) = 1

    Với a_{6} = 1 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 2 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 4,\ 5 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 4,\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 3,\ 6 ight\} \\\end{matrix} ight.

    Với a_{6} = 3 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 4 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2;\ 4;\ 5 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 6 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 5 ight\} \\\end{matrix} ight.

    Với a_{6} = 5 thì \left( a_{1} + a_{2} + a_{3} ight) - \left(a_{4} + a_{5} ight) = 6 \Rightarrow \left\{ \begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 2,\ 3,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 1,\ 4 ight\} \\\end{matrix} ight. hoặc \left\{\begin{matrix}a_{1},\ a_{2},\ a_{3} \in \left\{ 1,\ 4,\ 6 ight\} \\a_{4},\ a_{5} \in \left\{ 2,\ 3 ight\} \\\end{matrix} ight.

    Mỗi trường hợp có 3!.2! = 12 số thỏa mãn yêu cầu

    Vậy có tất cả 6.12 = 72 số cần tìm.

  • Câu 13: Nhận biết
    Hỏi có bao nhiêu cách phân công

    Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có 5 sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 người đó?

    Hướng dẫn:

    Mỗi cách xếp 5 sinh viên vào 5 vị trí thỏa đề là một hoán vị của 5 phần tử.

    Suy ra số cách xếp là 5! = 120 cách.

  • Câu 14: Nhận biết
    Hỏi có bao nhiêu cách sắp xếp

    Cho hai dãy ghế được xếp như sau.

    Xếp 4 bạn nam và 4 bạn nữ vào hai dãy ghế trên. Hai người được gọi là ngồi đối diện nhau nếu ngồi ở hai dãy và có cùng vị trí ghế (số ở ghế). Số cách xếp để mỗi bạn nam ngồi đối diện với một bạn nữ bằng bao nhiêu?

    Hướng dẫn:

    Xếp 4 bạn nam vào một dãy có 4! (cách xếp).

    Xếp 4 bạn nữ vào một dãy có 4! (cách xếp).

    Với mỗi một số ghế có 2 cách đổi vị trí cho bạn nam và bạn nữ ngồi đối diện nhau.

    Số cách xếp theo yêu cầu là. 4!.4!.2^{4} (cách xếp).

  • Câu 15: Vận dụng
    Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    Có 8 nhà khoa học Toán (6 nam, 2 nữ) và 5 nhà khoa học Vật Lí (toàn nam). Hỏi có bao nhiêu cách lập một đội gồm 4 nhà khoa học trong đó có cả nam, nữ, cả Toán, Vật Lí?

    Hướng dẫn:

    +TH1. Có đúng 1 nữ nhà khoa học Toán, có 2 cách chọn. Lúc này chỉ cần có nhà khoa học Vật Lí là thỏa mãn đề bài, có thể có hoặc không nhà khoa học Toán nam nào khác, số cách chọn 3 nhà khoa học còn lại là C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} +
C_{5}^{3}. Vậy số cách lập nhóm trong trường hợp này là. 2.\left( C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1}
+ C_{5}^{3} ight)

    +TH2. Có đúng 2 nữ nhà khoa học Toán, có 1 cách chọn. Cũng với ý tưởng như trên, chỉ cần có nhà khoa học Vật Lí là thỏa mãn, số cách chọn 2 nhà khoa học còn lại là C_{5}^{1}C_{6}^{1}
+ C_{5}^{2}. Vậy số cách lập nhóm trong trường hợp này là. C_{5}^{1}.C_{6}^{1} +
C_{5}^{2}.

    Vậy số cách lập cần tìm là. 2.\left(
C_{5}^{1}.C_{6}^{2} + C_{5}^{2}.C_{6}^{1} + C_{5}^{3} ight) +
C_{5}^{1}.C_{6}^{1} + C_{5}^{2} = 375.

  • Câu 16: Nhận biết
    Hỏi có bao nhiêu cách sắp xếp

    Sắp xếp 5 bạn học sinh An, Bình, Chi, Dũng, Lệ vào một chiếc ghế dài có 5 chỗ ngồi. Đếm số cách sắp xếp thỏa mãn bạn An và bạn Dũng không ngồi cạnh nhau?

    Hướng dẫn:

    +) Xếp 5 bạn vào 5 chỗ ngồi có 5! cách.

    +) Xếp An và Dũng ngồi cạnh nhau có 2 cách. Xem An và Dũng là 1 phần tử cùng với 3 bạn còn lại là 4 phần tử xếp vào 4 chỗ. Suy ra số cách xếp 5 bạn sao cho An và Dũng luôn ngồi cạnh nhau là. 2.4! cách.

    Vậy số cách xếp 5 bạn vào 5 ghế sao cho An và Dũng không ngồi cạnh nhau là.

    5!–2.4! = 72.

  • Câu 17: Vận dụng
    Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Một rổ có 10 loại quả khác nhau trong đó có 1 mít và 1 bưởi. Hỏi có bao nhiêu cách xếp thành một hàng sao cho mít và bưởi cách nhau đúng 2 quả khác?

    Hướng dẫn:

    Xếp cố định 8 quả khác mít và bưởi vào hàng, có 8! cách xếp. Lúc này trên hàng có 9 khoảng trống, gồm khoảng trống giữa 2 quả khác bất kì và vị trí đầu, cuối hàng. Trong đó ta có 7 cặp khoảng trống mà khoảng cách giữa khoảng có đúng 2 quả khá

    C. Mỗi cặp khoảng trống đó ta sẽ cho vào đó quả mít và quả bưởi, có cách xếp mít và bưởi tương ứng là. 7.2! .

    Vậy số cách xếp cần tìm. 8!.7.2! = 564480.

  • Câu 18: Thông hiểu
    Tìm số các số tự nhiên thỏa mãn

    Tìm số các số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ?

    Hướng dẫn:

    Trường hợp 1: 3 chữ số đều lẻ. Có A_{5}^{3} = 60 số thỏa mãn.

    Trường hợp 2: số đó gồm 2 chữ số chẵn và 1 chữ số lẻ

    - Chọn 2 chữ số chẵn khác nhau có C_{5}^{2} = 10 cách.

    - Chọn 1 chữ số lẻ có 5 cách.

    - Từ 3 số đã chọn đó lập được 3! =6 số.

    Do đó có 10.5.6 = 300 dãy gồm 3 chữ số phân biệt, trong đó có 2 chữ số chẵn, 1 chữ số lẻ kể cả chữ số 0 đứng đầu.

    Xét dãy số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0

    - Chọn 1 chữ số lẻ có 5 cách.

    - Chọn 1 chữ số chẵn khác chữ số 0 có 4 cách.

    Vậy có 4.5.2! = 40 số có 3 chữ số phân biệt, gồm 2 chữ số chẵn, 1 chữ số lẻ mà chữ số đầu bằng 0.

    Do đó có 60 + 300 - 40 = 320 số tự nhiên có 3 chữ số phân biệt mà tổng các chữ số là số lẻ.

  • Câu 19: Vận dụng
    Tổng số nguyên dương n thỏa mãn là

    Tổng số nguyên dương n thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n là:

    Hướng dẫn:

    Điều kiện. \left\{ \begin{matrix}
n \geq 2 \\
n \in N* \\
\end{matrix} ight..

    A_{n}^{2} - 3C_{n}^{2} = 15 - 5n
\Leftrightarrow n(n - 1) - 3\frac{n(n - 1)}{2} = 15 - 5n \Leftrightarrow
- n^{2} + 11n - 30 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 6 \\
n = 5 \\
\end{matrix} ight.

    \Rightarrow n = 6 hoặc n = 5.

    Vậy tổng số nguyên dương n bằng 11.

  • Câu 20: Vận dụng
    Hỏi có bao nhiêu cách chọn?

    Có 10 quyển sách Toán, 8 quyển sách Lí, 5 quyển sách Văn. Cần chọn ra 8 quyển có ở cả ba môn sao cho số quyển Toán ít nhất là bốn và số quyển Văn nhiều nhất là hai. Hỏi có bao nhiêu cách chọn?

    Hướng dẫn:

    Chọn 4 Toán, 2 Văn, 2 Lí có C_{10}^{4}C_{5}^{2}C_{8}^{2} cách.

    Chọn 4 Toán, 1 Văn, 3 Lí có C_{10}^{4}C_{5}^{1}C_{8}^{3} cách.

    Chọn 5 Toán, 2 Văn, 1 Lí có C_{10}^{5}C_{5}^{2}C_{8}^{1} cách.

    Chọn 5 Toán, 1 Văn, 2 Lí có C_{10}^{5}C_{5}^{1}C_{8}^{2} cách.

    Chọn 6 Toán, 1 Văn, 1 Lí có C_{10}^{6}C_{5}^{1}C_{8}^{1} cách.

    Tổng lại ta được 181440 cách thỏa mãn.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (30%):
    2/3
  • Thông hiểu (15%):
    2/3
  • Vận dụng (55%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 6 lượt xem
Sắp xếp theo