Luyện tập Tích vô hướng của hai vectơ (Dễ)

Cùng luyện tập bài Tích vô hướng của hai vectơ các em nhé!

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Chọn công thức đúng

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} được xác định bằng công thức nào dưới đây?

    Hướng dẫn:

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} đều khác vectơ \overrightarrow{0}. Tích vô hướng của \overrightarrow{a}\overrightarrow{b} là một số, kí hiệu là \overrightarrow{a}.\overrightarrow{b}, được xác định bởi công thức sau:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|\cos\left( \overrightarrow{a},\overrightarrow{b}
ight).

  • Câu 2: Nhận biết
    Chọn kết quả đúng

    Cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0}.Trong các kết quả sau đây,hãy chọn kết quả đúng.

    Hướng dẫn:

    Ta thấy vế trái của 4 phương án giống nhau.

    Bài toán cho \overrightarrow{a}\overrightarrow{b} là hai vectơ cùng hướng và đều khác vectơ \overrightarrow{0} suy ra \left( \overrightarrow{a},\overrightarrow{b}
ight) = 0^{0}

    Do đó \overrightarrow{a}.\overrightarrow{b} = \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight|.cos0^{o} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight| nên

  • Câu 3: Nhận biết
    Tính tích vô hướng

    Cho tam giác đều ABC có cạnh bằng a. Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Hướng dẫn:

    \overrightarrow{AB}.\overrightarrow{AC}.
= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}
ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight) =
a.a.cos60^{{^\circ}} = \frac{a^{2}}{2}.

  • Câu 4: Thông hiểu
    Xác định góc giữa hai vectơ

    Cho hai vectơ \overrightarrow{a}\overrightarrow{b} khác \overrightarrow{0}. Xác định góc \alpha giữa hai vectơ \overrightarrow{a}\overrightarrow{b} khi \overrightarrow{a}.\overrightarrow{b} = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.

    Hướng dẫn:

    \overrightarrow{a}.\overrightarrow{b} =
\left| \overrightarrow{a} ight|.\left| \overrightarrow{b}
ight|.cos(\overrightarrow{a},\overrightarrow{b}) = - \left|
\overrightarrow{a} ight|.\left| \overrightarrow{b} ight| nên cos(\overrightarrow{a},\overrightarrow{b}) = - 1
\Rightarrow (\overrightarrow{a},\overrightarrow{b}) =
180^{o}.

  • Câu 5: Thông hiểu
    Tinh góc giữa hai vectơ

    Cho \overrightarrow{OM} = ( - 2; - 1),\overrightarrow{ON} = (3; - 1). Tính góc của \left(
\overrightarrow{OM},\overrightarrow{ON} ight).

    Hướng dẫn:

    Ta có \cos\left(\overrightarrow{OM},\overrightarrow{ON} ight) =\frac{\overrightarrow{OM}.\overrightarrow{ON}}{\left|\overrightarrow{OM} ight|.\overrightarrow{|ON|}}= \frac{-5}{\sqrt{5}.\sqrt{10}} = - \frac{\sqrt{2}}{2} \Rightarrow \left(\overrightarrow{OM},\overrightarrow{ON} ight) = 135^{o}.

  • Câu 6: Nhận biết
    Tính tích vô hướng

    Cho tam giác ABCcân tại A, \widehat{A} = 120^{o} AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Hướng dẫn:

    Ta có \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{o} = - \frac{1}{2}a^{2}.

  • Câu 7: Thông hiểu
    Tính cos A

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Hướng dẫn:

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 8: Thông hiểu
    Mệnh đề nào sau đây là sai?

    Cho tam giác đều ABC có cạnh bằng a và chiều cao AH. Mệnh đề nào sau đây là sai?

    Hướng dẫn:

    +)AH\bot BC nên đáp án \overrightarrow{AH}.\overrightarrow{BC} =
0 đúng.

    +)\left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0}. Đáp án \left(
\overrightarrow{AB},\overrightarrow{HA} ight) = 150^{0} đúng.

    +)\overrightarrow{AB}.\overrightarrow{AC}= \left| \overrightarrow{AB} ight|.\left| \overrightarrow{AC}ight|.cos\left( \overrightarrow{AB},\overrightarrow{AC} ight)=a.a.\cos 60^{\ ^{{^\circ}}} = \frac{a^{2}}{2}. Đáp án \overrightarrow{AB}.\overrightarrow{AC} =
\frac{a^{2}}{2}. đúng.

    +)\overrightarrow{AC}.\overrightarrow{CB}
= \left| \overrightarrow{AC} ight|.\left| \overrightarrow{CB}
ight|.cos120^{\ ^{{^\circ}}} = - \frac{a^{2}}{2}. Đáp án \overrightarrow{AC}.\overrightarrow{CB} =
\frac{a^{2}}{2}. sai.

  • Câu 9: Thông hiểu
    Tính tích vô hướng

    Cho tam giác ABCAB =
2\ \ cm,BC = 3\ \ cm,CA = 5\ \ cm. Tính \overrightarrow{CA}.\overrightarrow{CB}.

    Hướng dẫn:

    Ta có \cos C = \frac{BC^{2} + AC^{2} -AB^{2}}{2.BC.AC}= \frac{3^{2} + 5^{2} - 2^{2}}{2.3.5} = 1

    \overrightarrow{CA}.\overrightarrow{CB}
= \left| \overrightarrow{CA} ight|.\left| \overrightarrow{CB}
ight|.cosC = 15

  • Câu 10: Thông hiểu
    Hệ thức nào sau đây là sai?

    Tam giác ABC vuông ở A và có góc \widehat{B} = 50^{o}. Hệ thức nào sau đây là sai?

    Hướng dẫn:

    \left( \overrightarrow{AB},\
\overrightarrow{BC} ight) = 180^{0} - \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = 130^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{BC}
ight) = 130^{o}.

    \left( \overrightarrow{BC},\
\overrightarrow{AC} ight) = \left( \overrightarrow{CB},\
\overrightarrow{CA} ight) = 40^{o} nên loại \left( \overrightarrow{BC},\ \overrightarrow{AC}
ight) = 40^{o}.

    \left( \overrightarrow{AB},\
\overrightarrow{CB} ight) = \left( \overrightarrow{BA},\
\overrightarrow{BC} ight) = 50^{o} nên loại \left( \overrightarrow{AB},\ \overrightarrow{CB}
ight) = 50^{o}.

    \left( \overrightarrow{AC},\
\overrightarrow{CB} ight) = 180^{0} - \left( \overrightarrow{CA},\
\overrightarrow{CB} ight) = 140^{o}nên chọn \left( \overrightarrow{AC},\ \overrightarrow{CB}
ight) = 120^{o}.

  • Câu 11: Thông hiểu
    Khẳng định nào sau đây sai?

    Trong mp Oxy cho A(4;6), B(1;4), C\left( 7;\frac{3}{2} ight). Khẳng định nào sau đây sai?

    Hướng dẫn:

    Ta có \overrightarrow{BC} = \left( 6; -
\frac{5}{2} ight) suy ra BC =
\sqrt{6^{2} + \left( - \frac{5}{2} ight)^{2}} =
\frac{13}{2}nên chọn đáp án sai \left| \overrightarrow{BC} ight| =
\frac{\sqrt{13}}{2}.

  • Câu 12: Nhận biết
    Tính tích vô hướng

    Trong mặt phẳng tọa độ Oxy, cho ba điểm A(3; - 1),B(2;10),C( - 4;2). Tính tích vô hướng \overrightarrow{AB}.\overrightarrow{AC}.

    Hướng dẫn:

    Ta có: \overrightarrow{AB} = ( -
1;11),\overrightarrow{AC} = ( -
7;3) \Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=40.

  • Câu 13: Vận dụng
    Tìm vectơ thỏa mãn

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2;3)\overrightarrow{b} = (4;1). Tìm vectơ \overrightarrow{d} biết \overrightarrow{a}.\overrightarrow{d} = 4\overrightarrow{b}.\overrightarrow{d} = -
2.

    Hướng dẫn:

    Gọi \overrightarrow{d} = (x;y).

    Ta có: \overrightarrow{d}.\overrightarrow{a}
= 4 \Leftrightarrow - 2x + 3y = 4\overrightarrow{b}.\overrightarrow{d} = - 2
\Leftrightarrow 4x + y = - 2

    Giải hệ phương trình: \left\{
\begin{matrix}
- 2x + 3y = 4 \\
4x + y = - 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - \frac{5}{7} \\
y = \frac{6}{7} \\
\end{matrix} ight. nên \overrightarrow d=\left(\mathbf{-}\frac{5}{7};\frac{6}{7}ight).

  • Câu 14: Vận dụng
    Tìm k thỏa mãn điều kiện

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} vuông góc với \overrightarrow{v}.

    Hướng dẫn:

    Ta có:

    \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u}\left( \frac{1}{2}; - 5 ight)

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; -
4)

    Để \overrightarrow{u}\bot\overrightarrow{v}
\Leftrightarrow \frac{1}{2}.k + 20 = 0 \Leftrightarrow k = -
40.

  • Câu 15: Vận dụng
    Tìm m thỏa mãn điều kiện

    Trong mặt phẳng tọa độ Oxy, cho ba vectơ \overrightarrow{u} = (4;1),\overrightarrow{v} =
(1;4)\overrightarrow{a} =
\overrightarrow{u} + m.\overrightarrow{v} với m\mathbb{\in R}. Tìm m để \overrightarrow{a} vuông góc với trục hoành.

    Hướng dẫn:

    Trục hoành có vtcp \overrightarrow{i}(1;0).

    m = 4 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} + 4\overrightarrow{v} = (8;17). Do đó: \overrightarrow{a}.\overrightarrow{i} = 8.1 + 17.0
eq 0 nên đáp án m = 4 sai.

    m = - 4 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} - 4\overrightarrow{v} = (0; - 15). Do đó: \overrightarrow{a}.\overrightarrow{i} = 0.1
+ ( - 15).0 = 0 nên đáp án m = -
4 đúng.

    m = - 2 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} - 2\overrightarrow{v} = (2; - 7). Do đó: \overrightarrow{a}.\overrightarrow{i} = 2.1
+ ( - 7).0 eq 0 nên đáp án m = -
2 sai.

    m = 2 \Rightarrow \overrightarrow{a} =
\overrightarrow{u} + 2\overrightarrow{v} = (6;9). Do đó: \overrightarrow{a}.\overrightarrow{i} = 6.1 + 9.0
eq 0 nên đáp án m = 2 sai.

  • Câu 16: Vận dụng
    Khẳng định nào sau đây là đúng?

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABCA( -
1;1),B(1;3)C(1; - 1). Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    \overrightarrow{AB}\mathbf{=}(2;2)\Rightarrow\left|\overrightarrow{{AB}}ight|\mathbf{=}{2}\sqrt{{2}}.

    \overrightarrow{AC}=(2;-2)\Rightarrow\left|\overrightarrow {AC}ight|\mathbf{=}2\sqrt{{2}}.

    Ta có: AB = AC\Rightarrow \Delta{ABC} cân tại A.

    \overrightarrow{BC}=(0;-4)\Rightarrow\left|\overrightarrow{BC}ight|={4}.

    BC^2=AB^2+AC^2 =8+8=4^2 \Rightarrow \Delta ABC vuông tại A.

    Vậy \Delta ABC vuông cân tại A.

  • Câu 17: Vận dụng
    Khẳng định nào sau đây đúng.

    Trong mặt phẳng Oxy cho A( - 1;1), B(1;3), C(1;
- 1). Khẳng định nào sau đây đúng.

    Hướng dẫn:

    Do \overrightarrow{AB} = (2;2) nên loại đáp án \overrightarrow {AB}=(-4;2).

    Do\overrightarrow{AB} =
(2;2),\overrightarrow{BC} = (0; -
4),\overrightarrow{AB}.\overrightarrow{BC} = -
8 suy ra\overrightarrow{AB} không vuông góc \overrightarrow{BC} nên loại đáp án \overrightarrow{AB}\bot\overrightarrow{BC}.

    Ta có \overrightarrow{AB} =
(2;2), \overrightarrow{AC} = (2; -
2), \overrightarrow{BC} = (0; -
4), suy ra AB = AC =
\sqrt{8}, \overrightarrow{AB}.\overrightarrow{AC} =
0. Do đó tam giác ABC vuông cân tại A.

  • Câu 18: Vận dụng
    Tính tích vô hướng

    Cho 2 vectơ đơn vị \overrightarrow{a}\overrightarrow{b} thỏa\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2. Hãy xác định \left(
3\overrightarrow{a} - 4\overrightarrow{b} ight)\left(
2\overrightarrow{a} + 5\overrightarrow{b} ight).

    Hướng dẫn:

    Ta có: \left| \overrightarrow{a} ight|
= \left| \overrightarrow{b} ight| = 1\left| \overrightarrow{a} + \overrightarrow{b}
ight| = 2 \Leftrightarrow \left( \overrightarrow{a} +
\overrightarrow{b} ight)^{2} = 4 \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 1 .

    Suy ra \left( 3\overrightarrow{a} -4\overrightarrow{b} ight)\left( 2\overrightarrow{a} +5\overrightarrow{b} ight)= 6{\overrightarrow{a}}^{2} -20{\overrightarrow{b}}^{2} + 7\overrightarrow{a}.\overrightarrow{b} = -7.

  • Câu 19: Vận dụng
    Tìm k thỏa mãn điều kiện

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{u} = \frac{1}{2}\overrightarrow{i}
- 5\overrightarrow{j}\overrightarrow{v} = k\overrightarrow{i} -
4\overrightarrow{j}. Tìm k để vectơ \overrightarrow{u} và vectơ \overrightarrow{v} có độ dài bằng nhau.

    Hướng dẫn:

    Ta có: \overrightarrow{u} =
\frac{1}{2}\overrightarrow{i} - 5\overrightarrow{j} \Rightarrow
\overrightarrow{u} = \left( \frac{1}{2}; - 5 ight) \Rightarrow \left|
\overrightarrow{u} ight| = \frac{\sqrt{101}}{2}

    \overrightarrow{v} = k\overrightarrow{i}
- 4\overrightarrow{j} \Rightarrow \overrightarrow{v} = (k; - 4)
\Rightarrow \left| \overrightarrow{v} ight| = \sqrt{k^{2} +
16}

    Để \left| \overrightarrow{u} ight| =
\left| \overrightarrow{v} ight| \Leftrightarrow \frac{\sqrt{101}}{2} =
\sqrt{k^{2} + 16} \Leftrightarrow \frac{101}{4} = k^{2} + 16
\Leftrightarrow k = \pm \frac{\sqrt{37}}{2}.

  • Câu 20: Vận dụng
    Tính độ dài vectơ

    Cho 2 vectơ \overrightarrow{a}\overrightarrow{b}\left| \overrightarrow{a} ight| = 4, \left| \overrightarrow{b} ight| =
5\left(
\overrightarrow{a},\overrightarrow{b} ight) = 120^{o}.Tính \left| \overrightarrow{a} +
\overrightarrow{b} ight|.

    Hướng dẫn:

    Ta có \left| \overrightarrow{a} +\overrightarrow{b} ight| = \sqrt{\left( \overrightarrow{a} +\overrightarrow{b} ight)^{2}}= \sqrt{{\overrightarrow{a}}^{2} +{\overrightarrow{b}}^{2} + 2\overrightarrow{a}.\overrightarrow{b}}=\sqrt{\left| \overrightarrow{a} ight|^{2} + \left| \overrightarrow{b}ight|^{2} + 2\left| \overrightarrow{a} ight|\left|\overrightarrow{b} ight|\ \ \cos\left(\overrightarrow{a},\overrightarrow{b} ight)}= \sqrt{21}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
  • 5 lượt xem
Sắp xếp theo