Luyện tập Quy tắc đếm (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.

    Một tổ có 5 học sinh nữ và 6 học sinh nam. Hỏi có bao nhiêu cách chọn ngẫu nhiên hai học sinh của tổ đó đi trực nhật biết cần có cả nam và nữ.

    Hướng dẫn:

    Chọn một học sinh nữ có 5 cách.

    Chọn một học sinh nam có 6 cách.

    Áp dụng quy tắc nhân, có 5.6 = 30 cách chọn hai học sinh có cả nam và nữ.

  • Câu 2: Nhận biết
    Hỏi có bao nhiêu cách chọn thực đơn?

    Một người vào cửa hàng ăn, người đó chọn thực đơn. Trong đó gồm 1 món ăn trong 5 món ăn, 1 loại quả tráng miệng trong 4 loại quả tráng miệng và 1 loại nước uống trong 3 loại nước uống. Hỏi có bao nhiêu cách chọn thực đơn?

    Hướng dẫn:

    Chọn một món ăn có 5 cách.

    Chọn một loại quả tráng miệng có 4 cách.

    Chọn một loại nước uống có 3 cách.

    Áp dụng quy tắc nhân, có 5.4.3 = 60 cách chọn thực đơn.

  • Câu 3: Nhận biết
    Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Nam muốn qua nhà Hải để cùng Hải đến chơi nhà Cường. Từ nhà Nam đến nhà Hải có 4 con đường đi, từ nhà Hải đến nhà Cường có 6 con đường đi. Hỏi Nam có bao nhiêu cách chọn đường đi đến nhà Cường cùng Hải?

    Hướng dẫn:

    Từ nhà Nam đến nhà Hải có 4 con đường.

    Từ nhà Hải đến nhà Cường có 6 con đường.

    Áp dụng quy tắc nhân, có 4.6 = 24 cách đi từ nhà Nam đến nhà Cường (đi qua nhà Hải).

  • Câu 4: Thông hiểu
    Có bao nhiêu cách xếp 5 bạn thỏa mãn

    Có bao nhiêu cách xếp 5 bạn A, B, C, D, E vào một băng ghế dài sao cho C luôn ở chính giữa.

    Hướng dẫn:

    Giả sử 5 bạn ngồi vào 5 vị trí được đánh số 1, 2, 3, 4, 5.

    Xếp bạn C vào vị trí số 3: có 1 cách.

    Xếp 1 bạn trong 4 bạn còn lại vào vị trí 1: có 4 cách.

    Xếp 1 bạn trong 3 bạn còn lại vào vị trí 2: có 3 cách.

    Xếp 1 bạn trong 2 bạn còn lại vào vị trí 3: có 2 cách.

    Xếp bạn còn lại vào vị trí 5: có 1 cách.

    Áp dụng quy tắc nhân, có 1.4.3.2 = 24 cách xếp 5 bạn vào ghế băng dài sao cho C luôn ở chính giữa.

  • Câu 5: Thông hiểu
    Có bao nhiêu số tự nhiên gồm 3 chữ số?

    Có bao nhiêu số tự nhiên gồm 3 chữ số?

    Hướng dẫn:

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí A: có 9 cách chọn từ 1 đến 9 (bỏ số 0).

    Vị trí B: có 10 cách chọn từ 0 đến 9.

    Vị trí C: có 10 cách chọn từ 0 đến 9.

    Áp dụng quy tắc nhân, có 9.10.10 = 900 (số).

  • Câu 6: Thông hiểu
    Có bao nhiêu số tự nhiên gồm 3 chữ số lẻ?

    Có bao nhiêu số tự nhiên gồm 3 chữ số lẻ?

    Hướng dẫn:

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí A: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Vị trí B: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Vị trí C: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Áp dụng quy tắc nhân, có 5.5.5 = 125 (số).

  • Câu 7: Thông hiểu
    Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và là số lẻ?

    Có bao nhiêu số tự nhiên gồm 3 chữ số khác nhau và là số lẻ?

    Hướng dẫn:

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Vị trí C: có 5 cách chọn, đó là các số 1, 3, 5, 7, 9.

    Vị tri A: có 8 cách chọn, bỏ số 0 và khác 1 số ở vị trí C.

    Vị trí B: có 8 cách chọn, khác 1 số ở vị trí C, 1 số ở vị trí A.

    Áp dụng quy tắc nhân, có 5.8.8 = 320 (số).

  • Câu 8: Thông hiểu
    Có bao nhiêu số tự nhiên chia hết cho 2 và gồm 4 chữ số?

    Có bao nhiêu số tự nhiên chia hết cho 2 và gồm 4 chữ số?

    Hướng dẫn:

    Gọi số thỏa mãn đề bài có dạng \overline{ABC}.

    Trường hợp 1: C bằng 0. Suy ra có 1 cách chọn.

    Vị trí A: có 9 cách chọn, khác số 0.

    Vị trí B: có 10 cách chọn.

    Suy ra có: 1.9.10 = 90 (số).

    Trường hợp 2: C khác 0. Suy ra C có 4 cách chọn (2, 4, 6, 8).

    Vị trí A: có 9 cách chọn, khác số 0.

    Ví trí B: Có 10 cách chọn.

    Suy ra có: 4.9.10 = 360 (số).

    Vậy, áp dụng quy tắc cộng, có 90 + 360 = 450 (số).

  • Câu 9: Thông hiểu
    Hỏi bài thi đó có tất cả bao nhiêu đáp án?

    Một bài thi trắc nghiệm khách quan gồm 8 câu hỏi. Mỗi câu hỏi gồm 4 đáp án trả lời. Hỏi bài thi đó có tất cả bao nhiêu đáp án?

    Hướng dẫn:

    Mỗi câu hỏi gồm 4 đáp án, có 8 câu hỏi nên có: 4.4.4.4.4.4.4.4 = 4^{8} (đáp án). (quy tắc nhân)

  • Câu 10: Thông hiểu
    Tìm số cách chọn một chiếc áo và một chiếc cà vạt thỏa mãn

    Một người có 5 chiếc áo trong đó có 3chiếc áo trắng. Người đó cũng có 3 chiếc cà vạt trong đó có 2 chiếc cà vạt màu vàng. Tìm số cách chọn một chiếc áo và một chiếc cà vạt sao cho đã chọn áo trắng thì không chọn cà vạt màu vàng.

    Hướng dẫn:

    5 chiếc áo gồm: 3 trắng và 2 màu khác.

    3 chiếc cà vạt gồm: 2 vàng và 1 màu khác.

    Trường hợp 1: Áo trắng, cà vạt màu khác vàng.

    Áo trắng: có 3 cách chọn.

    Cà vạt màu khác vàng: 1 cách chọn.

    Suy ra có: 3.1 = 3 (cách).

    Trường hợp 2: Áo màu khác trắng, cà vạt màu bất kì.

    Áo màu khác trắng: 2 cách chọn.

    Cà vạt màu bất kì: 3 cách chọn.

    Suy ra có: 2.3 = 6 (cách).

    Vậy có: 3+6 = 9 (cách) chọn thỏa mãn yêu cầu đề bài.

  • Câu 11: Vận dụng
    Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình

    Trong một tuần, bạn A dự định mỗi ngày đi thăm một người bạn trong 12 người bạn của mình. Hỏi bạn A có thể lập được bao nhiêu kế hoạch đi thăm bạn của mình (Có thể thăm một bạn nhiều lần).

    Hướng dẫn:

    Thứ 2: có 12 cách chọn bạn đi thăm

    Thứ 3: có 12 cách chọn bạn đi thăm

    Thứ 4: có 12 cách chọn bạn đi thăm

    Thứ 5: có 12 cách chọn bạn đi thăm

    Thứ 6: có 12 cách chọn bạn đi thăm

    Thứ 7: có 12 cách chọn bạn đi thăm

    Chủ nhật: có 12 cách chọn bạn đi thăm

    Vậy theo quy tắc nhân, có 12^{7} =
35831808 (kế hoạch).

  • Câu 12: Vận dụng
    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 thỏa mãn

    Hỏi có tất cả bao nhiêu số tự nhiên chia hết cho 9 mà mỗi số 2011 chữ số và trong đó có ít nhất hai chữ số 9.

    Hướng dẫn:

    Đặt X là các số tự nhiên thỏa yêu cầu bài toán.

    A ={ các số tự nhiên không vượt quá 2011 chữ số và chia hết cho 9}

    Với mỗi số thuộc A có m chữ số (m \leq 2008) thì ta có thể bổ sung thêm 2011 - m số 0 vào phía trước thì số có được không đổi khi chia cho 9. Do đó ta xét các số thuộc A có dạng \overline{a_{1}a_{2}...a_{2011}};\ a_{i} \in
\left\{ 0,1,2,3,...,9 ight\}

    A_{0} = \left\{ a \in A| ight.mà trong a không có chữ số 9}

    A_{1} = \left\{ a \in A| ight. mà trong a có đúng 1 chữ số 9}

    \bullet Ta thấy tập A có 1 + \frac{9^{2011} - 1}{9} phần tử

    \bullet Tính số phần tử của A_{0}

    Với x \in A_{0} \Rightarrow x =
\overline{a_{1}...a_{2011}};a_{i} \in \left\{ 0,1,2,...,8 ight\}\ i =
\overline{1,2010}a_{2011} = 9 -
r với r \in \lbrack 1;9brack,r
\equiv \sum_{i = 1}^{2010}a_{i}. Từ đó ta suy ra A_{0}9^{2010} phần tử.

    \bullet Tính số phần tử của A_{1}

    Để lập số của thuộc tập A_{1} ta thực hiện liên tiếp hai bước sau:

    Bước 1: Lập một dãy gồm 2010 chữ số thuộc tập \left\{ 0,1,2...,8
ight\} và tổng các chữ số chia hết cho 9. Số các dãy là 9^{2009}.

    Bước 2: Với mỗi dãy vừa lập trên, ta bổ sung số 9 vào một vị trí bất kì ở dãy trên, ta có 2010 các bổ sung số 9.

    Do đó A_{1}2010.9^{2009} phần tử.

    Vậy số các số cần lập là:

    1 + \frac{9^{2011} - 1}{9} - 9^{2010} -
2010.9^{2009} = \frac{9^{2011} - 2019.9^{2010} + 8}{9}.

  • Câu 13: Vận dụng
    Có bao nhiêu số tự nhiên thỏa mãn được lập từ tập A

    Cho tập hợp số: A = \left\{ 0,1,2,3,4,5,6 ight\}.Hỏi có thể thành lập bao nhiêu số có 4 chữ số khác nhau và chia hết cho 3.

    Hướng dẫn:

    Ta có một số chia hết cho 3 khi và chỉ khi tổng các chữ số chia hết cho 3. Trong tập A có các tập con các chữ số chia hết cho 3 là \{ 0,1,2,3\}, \{ 0,1,2,6\}, \{ 0,2,3,4\}, \{ 0,3,4,5\}, \{ 1,2,4,5\}, \{ 1,2,3,6\}, \left\{ 1,3,5,6 ight\}.

    Vậy số các số cần lập là: 4(4! - 3!) +
3.4! = 144 số.

  • Câu 14: Vận dụng
    Có bao nhiêu số tự nhiên thỏa mãn

    Số các số tự nhiên gồm 5 chữ số chia hết cho 10 là:

    Hướng dẫn:

    Gọi số cần tìm có dạng: \overline{abcde}\
\ \ \ \ \ \ (a eq 0).

    Chọn e: có 1 cách (e = 0)

    Chọn a: có 9 cách (a eq 0)

    Chọn \overline{bcd}: có 10^{3} cách

    Theo quy tắc nhân, có 1.9.10^{3} =
9000(số).

  • Câu 15: Vận dụng
    Có bao nhiêu số tự nhiên thỏa mãn được lập từ tập A

    Cho tập A =
\left\{ 0,1,2,3,4,5,6 ight\}. Từ tập A có thể lập được bao nhiêu số tự nhiên gồm 5 chữ số và chia hết cho 5.

    Hướng dẫn:

    Gọi x = \overline{abcde} là số cần lập, e \in \left\{ 0,5 ight\},a eq
0

    \bullet e = 0 \Rightarrow e có 1 cách chọn, cách chọn a,b,c,d:6.5.4.3

    Trường hợp này có 360 số

    e = 5 \Rightarrow e có một cách chọn, số cách chọn a,b,c,d:5.5.4.3 =
300

    Trường hợp này có 300 số.

    Vậy có 660 số thỏa yêu cầu bài toán.

  • Câu 16: Vận dụng
    Có bao nhiêu số tự nhiên thỏa mãn

    Từ các số 1,2,3,4,5,6,7 lập được bao nhiêu số tự nhiên gồm 4 chữ số khác nhau và là số chia hết cho 5?

    Hướng dẫn:

    x chia hết cho 5 nên d chỉ có thể là 5 \Rightarrow có 1 cách chọn d.

    Có 6 cách , 5 cách chọn b và 4 cách chọn c.

    Vậy có 1.6.5.4 = 120 số thỏa yêu cầu bài toán.

  • Câu 17: Vận dụng
    Có bao nhiêu số tự nhiên thỏa mãn được lập từ tập A

    Cho tập A =
\left\{ 1,2,3,4,5,6,7,8 ight\}. Từ tập A có thể lập được bao nhiêu số gồm 8 chữ số đôi một khác nhau sao các số này lẻ không chia hết cho 5.

    Hướng dẫn:

    x lẻ và không chia hết cho 5 nên d \in \left\{ 1,3,7 ight\} \Rightarrow
d có 3 cách chọn

    Số các chọn các chữ số còn lại là: 7.6.5.4.3.2.1

    Vậy 15120 số thỏa yêu cầu bài toán.

  • Câu 18: Vận dụng
    Có bao nhiêu số tự nhiên thỏa mãn

    Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 23.

    Hướng dẫn:

    Số các số tự nhiên lớn nhất nhỏ hơn 100 chia hết cho 2396.

    Số các số tự nhiên nhỏ nhất nhỏ hơn 100 chia hết cho 230.

    Số các số tự nhiên nhỏ hơn 100 chia hết cho 23\frac{96
- 0}{6} + 1 = 17.

  • Câu 19: Vận dụng
    Hỏi số vé gồm 5 chữ số khác nhau.

    Có 100000 vé được đánh số từ 00000 đến 99999. Hỏi số các vé gồm 5 chữ số khác nhau là bao nhiêu?

    Hướng dẫn:

    Gọi số in trên vé có dạng \overline{a_{1}a_{2}a_{3}a_{4}a_{5}}

    Số cách chọn a_{1} là 10 (a_{1} có thể là 0).

    Số cách chọn a_{2} là 9.

    Số cách chọn a_{3} là 8.

    Số cách chọn a_{4} là 7.

    Số cách chọn a_{5} là 6.

    Do đó có 10.9.8.7.6 = 23460 (số).

  • Câu 20: Vận dụng
    Tính tổng các chữ số

    Tính tổng các chữ số gồm 5 chữ số khác nhau được lập từ các số 1, 2, 3, 4, 5?

    Hướng dẫn:

    Có 120 số có 5 chữ số được lập từ 5 chữ số đã cho.

    Bây giờ ta xét vị trí của một chữ số trong 5 số 1, 2, 3, 4, 5 chẳng hạn ta xét số 1. Số 1 có thể xếp ở 5 vị trí khác nhau, mỗi vị trí có 4!=24 số nên khi ta nhóm các các vị trí này lại có tổng là : 24\left( 10^{4} + 10^{3} + 10^{2} + 10 + 1 ight)
= 24.11111.

    Vậy tổng các số có 5 chữ số là : 24.11111(1 + 2 + 3 + 4 + 5) =
3999960.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (15%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Vận dụng (50%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 4 lượt xem
Sắp xếp theo