Luyện tập Hàm số (Trung bình)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm tập xác định của hàm số

    Tập xác định của hàm số y = \sqrt{x - 1} là:

    Hướng dẫn:

    Hàm số y = \sqrt{x - 1} xác định  ⇔ x − 1 ≥ 0  ⇔ x ≥ 1.

  • Câu 2: Vận dụng
    Tìm đồ thị hàm số phù hợp

    Đồ thị của hàm số y = \frac{2}{3}x + \frac{1}{3}

    Hướng dẫn:

    Từ giả thiết hàm số đồng biến nên loại đáp án có đồ thị đi xuống từ trái sang phải.

    Mặt khác cho x = 0 vào y = \frac{2}{3}x + \frac{1}{3} =
\frac{1}{3} nên chọn đáp án đồ thị hàm số đi qua điểm \left( 0\ ;\ \frac{1}{3} ight).

  • Câu 3: Vận dụng
    Chọn khẳng định đúng

    Cho hai đường thẳng \left( d_{1} ight):y = \frac{1}{2}x + 100\left( d_{2} ight):y = - \frac{1}{2}x +
100. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Cách 1: Gọi k1, k2 lần lượt là hệ số gốc của (d1)(d2). Khi đó k_{1} = \frac{1}{2},\ k_{2} = - \frac{1}{2}
\Rightarrow k_{1}.k_{2} = - \frac{1}{4} nên (d1)(d2) không vuông góc nhau.

    Xét hệ: \left\{ \begin{matrix}
y = \frac{1}{2}x + 100 \\
y = - \frac{1}{2}x + 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- \frac{1}{2}x + y = 100 \\
\frac{1}{2}x + y = 100 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 0 \\
y = 100 \\
\end{matrix} ight.

    Vậy (d1)(d2) cắt nhau.

    Cách 2: Ta thấy \frac{1}{2} eq -
\frac{1}{2} nên (d1)(d2) cắt nhau.

  • Câu 4: Thông hiểu
    Tính giá trị hàm số tại điểm

    Cho hàm số f(x) =
\left\{ \begin{matrix}
\frac{2\sqrt{x - 2} - 3}{x - 1} & khi & x \geq 2 \\
x^{2} + 2 & khi & x < 2 \\
\end{matrix} ight.. Tính P = f(2) + f(−2).

    Hướng dẫn:

    Ta có: f(2) + f( - 2) = \frac{2\sqrt{2 -
2} - 3}{2 - 1} + ( - 2)^{2} + 2 \Rightarrow P = 3.

  • Câu 5: Nhận biết
    Tìm tập xác định

    Tập xác định của hàm số y = \sqrt{8 - 2x} - x là:

    Hướng dẫn:

    Điều kiện: 8 − 2x ≥ 0 ⇔ x ≤ 4. Vậy D = ( − ∞; 4].

  • Câu 6: Vận dụng
    Tìm m thỏa mãn điều kiện

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hướng dẫn:

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}.

    Vậy có 4 giá trị nguyên của m.

  • Câu 7: Vận dụng
    Tìm m thỏa mãn điều kiện

    Tìm m để hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} + \frac{3x -
1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1).

    Hướng dẫn:

    *Gọi D là tập xác định của hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} +
\frac{3x - 1}{\sqrt{- x + m + 5}}.

    *x \in D \Leftrightarrow \left\{
\begin{matrix}
x - 2m + 3 \geq 0 \\
x - m\boxed{=}0 \\
- x + m + 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2m - 3 \\
x\boxed{=}m \\
x < m + 5 \\
\end{matrix} ight..

    *Hàm số y = \frac{\sqrt{x - 2m + 3}}{x -
m} + \frac{3x - 1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1)

    \Leftrightarrow (0;1) \subset D
\Leftrightarrow \left\{ \begin{matrix}
2m - 3 \leq 0 \\
m + 5 \geq 1 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{3}{2} \\
m \geq - 4 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow m \in \lbrack - 4;0brack \cup
\left\lbrack 1;\frac{3}{2} ightbrack.

  • Câu 8: Thông hiểu
    Chọn khẳng định đúng

    Xét sự biến thiên của hàm số f(x) = \frac{3}{x} trên khoảng (0;+∞). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    \begin{matrix}
\forall x_{1},\ x_{2} \in (0; + \infty):\ x_{1} eq x_{2} \\
f\left( x_{2} ight) - f\left( x_{1} ight) = \frac{3}{x_{2}} -
\frac{3}{x_{1}} = \frac{- 3\left( x_{2} - x_{1} ight)}{x_{2}x_{1}}
\Rightarrow \frac{f\left( x_{2} ight) - f\left( x_{1} ight)}{x_{2} -
x_{1}} = - \frac{3}{x_{2}x_{1}} < 0 \\
\end{matrix}

    Vậy hàm số nghịch biến trên khoảng (0;+∞).

  • Câu 9: Thông hiểu
    Tính tổng các giá trị nguyên dương của m

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số

    y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) là:

    Hướng dẫn:

    Hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng \left( \frac{m +
1}{4}\ \ ;\ \  + \infty ight).

    Để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1  ;  5) thì ta phải có (1\ \ ;\ \ 5) \subset \left(
\frac{m + 1}{4}\ \ ;\ \  + \infty ight) \Leftrightarrow \frac{m + 1}{4} \leq 1
\Leftrightarrow m \leq 3.

    Các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)m = 1,  m = 2,  m = 3.

    Tổng tất cả các giá trị nguyên dương của tham số m để hàm số y =  − 2x2 + (m+1)x + 3 nghịch biến trên khoảng (1; 5)S = 1 + 2 + 3 = 6.

  • Câu 10: Vận dụng cao
    Tìm m thỏa mãn điều kiện

    Tìm m để hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} + \frac{3x -
1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1).

    Hướng dẫn:

    *Gọi D là tập xác định của hàm số y = \frac{\sqrt{x - 2m + 3}}{x - m} +
\frac{3x - 1}{\sqrt{- x + m + 5}}.

    *x \in D \Leftrightarrow \left\{
\begin{matrix}
x - 2m + 3 \geq 0 \\
x - m\boxed{=}0 \\
- x + m + 5 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 2m - 3 \\
x\boxed{=}m \\
x < m + 5 \\
\end{matrix} ight..

    *Hàm số y = \frac{\sqrt{x - 2m + 3}}{x -
m} + \frac{3x - 1}{\sqrt{- x + m + 5}} xác định trên khoảng (0;1)

    \Leftrightarrow (0;1) \subset D
\Leftrightarrow \left\{ \begin{matrix}
2m - 3 \leq 0 \\
m + 5 \geq 1 \\
m otin (0;1) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m \leq \frac{3}{2} \\
m \geq - 4 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow m \in \lbrack - 4;0brack
\cup \left\lbrack 1;\frac{3}{2} ightbrack.

  • Câu 11: Nhận biết
    Tìm tập xác định

    Tập xác định của hàm số y = \frac{2 - x}{x^{2} - 4x} là:

    Hướng dẫn:

    Hàm số xác định \Leftrightarrow x^{2} - 4x
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
x eq 4 \\
\end{matrix} ight.. Vậy D = ℝ ∖ {0;4}.

  • Câu 12: Nhận biết
    Tìm khẳng định đúng

    Cho hàm số có đồ thị như hình vẽ

    Khẳng định nào sau đây đúng:

    Hướng dẫn:

    Hàm số đồng biến trên khoảng (1;3).

  • Câu 13: Vận dụng cao
    Chọn khẳng định đúng

    Cho hai hàm số f(x) đồng biến và g(x) nghịch biến trên khoảng (a;b). Có thể kết luận gì về chiều biến thiên của hàm số y = f(x) + g(x) trên khoảng (a;b)?

    Hướng dẫn:

    Lây hàm số f(x) = xg(x) =  − x trên (0;1) thỏa mãn giả thiết

    Ta có y = f(x) + g(x) = x - x =
0\overset{}{ightarrow} không kết luận được tính đơn điệu.

  • Câu 14: Thông hiểu
    Tìm tập xác định

    Tập xác định của hàm số y = f(x) = \left\{ \begin{matrix}
\sqrt{- 3x + 8} + x & khi & x < 2 \\
\sqrt{x + 7} + 1 & khi & x \geq 2 \\
\end{matrix} ight.

    Gợi ý:

    Ta lấy hợp của tất cả các khoảng mà hàm số xác định.

    Hướng dẫn:

    Ta có :

    • Khi x < 2: y = f(x) = \sqrt{- 3x + 8} + x xác định khi - 3x + 8 \geq 0 \Leftrightarrow x \leq
\frac{8}{3}.

    Suy ra D1 = (−∞;2).

    • Khi x ≥ 2: y = f(x) = \sqrt{x + 7} + 1 xác định khi x + 7 ≥ 0 ⇔ x ≥  − 7.

    Suy ra D1 = [2;  + ∞).

    Vậy TXĐ của hàm số là D = D1 ∪ D2 = (−∞;+∞) = ℝ.

  • Câu 15: Vận dụng
    Tìm m thỏa mãn điều kiện

    Điểm A có hoành độ xA = 1 và thuộc đồ thị hàm số y = mx + 2m − 3. Tìm m để điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành).

    Hướng dẫn:

    Từ giả thiết điểm A nằm trong nửa mặt phẳng tọa độ phía trên trục hoành (không chứa trục hoành) nên yA > 0 ta có yA = mx + 2m − 3 = m.1 + 2m − 3 = 3m − 3 > 0 ⇔ m > 1.

  • Câu 16: Thông hiểu
    Tìm số các giá trị nguyên của m

    Cho hàm số y = (m
+ 2)x + \sqrt{2 - m}. Có bao nhiêu giá trị nguyên của m để hàm số đồng biến trên ?

    Hướng dẫn:

    Hàm số có dạng y = ax + b, nên để hàm số đồng biến trên khi và chỉ khi \left\{ \begin{matrix}
m + 2 > 0 \\
2 - m \geq 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
m > - 2 \\
m \leq 2 \\
\end{matrix} ight.. Mặt khác do m ∈ ℤ nên m ∈ {−1;  0;  1;  2}. Vậy có 4 giá trị nguyên của m.

  • Câu 17: Thông hiểu
    Tìm m để hàm số đồng biến

    Tìm m để hàm số y = (2m−1)x + 7 đồng biến trên .

    Hướng dẫn:

    Hàm số y = (2m−1)x + 7 đồng biến trên khi 2m − 1 > 0 hay m > \frac{1}{2}.

  • Câu 18: Nhận biết
    Tìm khẳng định sai

    Khẳng định nào về hàm số y = 3x + 5 là sai?

    Hướng dẫn:

    Hàm số y = 3x + 5 có hệ số a = 3 > 0 nên đồng biến trên , suy ra chọn đáp án Hàm số nghịch biến trên .

  • Câu 19: Thông hiểu
    Tìm tập xác định

    Tập xác định của hàm số y = \frac{\sqrt{3 - x} + \sqrt{x + 1}}{x^{2} - 5x +
6}

    Gợi ý:

    Hàm số y = \frac{A(x)}{B(x)} Điều kiện: B(x) ≠ 0.

    Hàm số y = \sqrt[{2k}]{A(x)}\ \left(
k\mathbb{\in N}* ight) \Rightarrow Điều kiện: A(x) ≥ 0.

    Hướng dẫn:

    Hàm số y = \frac{\sqrt{3 - x} + \sqrt{x +
1}}{x^{2} - 5x + 6} có nghĩa khi \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 1 \geq 0 \\
x^{2} - 5x + 6 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 1 \leq x \leq 3 \\
x eq 2;x eq 3 \\
\end{matrix} ight.

     ⇔ x ∈ [ − 1; 3) ∖ {2}.

  • Câu 20: Vận dụng
    Tìm a thỏa mãn điều kiện

    Các đường thẳng y =  − 5(x+1); y = 3x + a; y = ax + 3 đồng quy với giá trị của a

    Hướng dẫn:

    Gọi d1 : y =  − 5x − 5, d2 : y = 3x + a, d3 : y = ax + 3 (a≠3).

    Phương trình hoành độ giao điểm của d1d2: - 5x - 5 = 3x + a \Leftrightarrow x = \frac{- a -
5}{8}.

    Giao điểm của d1d2A\left( \frac{- a - 5}{8};\frac{5a - 15}{8}
ight).

    Đường thẳng d1, d2d3 đồng qui khi A ∈ d3 \Leftrightarrow \frac{5a - 15}{8} = a.\frac{- a -
5}{8} + 3 \Leftrightarrow a^{2} + 10a - 39 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 \\
a = - 13 \\
\end{matrix} ight.  ⇔ a =  − 13. (vì a ≠ 3)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (25%):
    2/3
  • Thông hiểu (35%):
    2/3
  • Vận dụng (30%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 13 lượt xem
Sắp xếp theo