Luyện tập Vectơ (Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm vectơ thỏa mãn

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là

    Hướng dẫn:

    Vectơ có điểm đầu là D, điểm cuối là E được kí hiệu là \overrightarrow{DE}.

  • Câu 2: Nhận biết
    Có bao nhiêu tam giác thỏa mãn

    Cho tam giác ABC. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và điểm cuối là các đỉnh A,\ B,\ C?

    Hướng dẫn:

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{BC},\ \ \overrightarrow{CB},\ \
\overrightarrow{CA},\ \ \overrightarrow{AC}.

  • Câu 3: Thông hiểu
    Có bao nhiêu vectơ thỏa mãn

    Cho tứ giác ABCD. Có bao nhiêu vectơ khác vectơ - không có điểm đầu và cuối là các đỉnh của tứ giác?

    Hướng dẫn:

    Xét các vectơ có điểm A là điểm đầu thì có các vectơ thỏa mãn bài toán là \overrightarrow{AB},\ \overrightarrow{AC},\
\overrightarrow{AD}\overset{}{ightarrow} có 3 vectơ.

    Tương tự cho các điểm còn lại B,\ C,\
D.

    Vậy chọn đáp án 12.

  • Câu 4: Nhận biết
    Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Vì vectơ - không cùng phương với mọi vectơ.

  • Câu 5: Nhận biết
    Tìm mệnh đề đúng

    Cho ba điểm A,\
B,\ C phân biệt. Khi đó:

    Hướng dẫn:

    Chọn: Điều kiện cần và đủ để A,\ B,\
C thẳng hàng là \overrightarrow{AB} cùng phương với \overrightarrow{AC}.

  • Câu 6: Nhận biết
    Tìm cặp vectơ cùng hướng.

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Hỏi cặp vectơ nào sau đây cùng hướng?

    Hướng dẫn:

    Cặp \overrightarrow{AB}\overrightarrow{MB} là cặp vectơ cùng hướng.

  • Câu 7: Thông hiểu
    Tim vectơ thỏa mãn

    Cho lục giác đều ABCDEF tâm O. Số các vectơ khác vectơ - không, cùng phương với \overrightarrow{OC} có điểm đầu và điểm cuối là các đỉnh của lục giác là

    Hướng dẫn:

    Đó là các vectơ: \overrightarrow{AB},\ \
\overrightarrow{BA},\ \ \overrightarrow{DE},\ \ \overrightarrow{ED},\ \
\overrightarrow{FC},\ \ \overrightarrow{CF}. Chọn 6.

  • Câu 8: Nhận biết
    Tìm đáp án đúng

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là

    Hướng dẫn:

    Với \overrightarrow{DE} (khác vectơ - không) thì độ dài đoạn ED được gọi là: Độ dài của \overrightarrow{ED}.

  • Câu 9: Thông hiểu
    Tìm mệnh đề sai

    Mệnh đề nào sau đây sai?

    Hướng dẫn:

    Chọn \left| \overrightarrow{AB} ight|
> 0.

    Vì có thể xảy ra trường hợp \left|
\overrightarrow{AB} ight| = 0 \Leftrightarrow A \equiv B.

  • Câu 10: Nhận biết
    Tìm mệnh đề đúng

    Hai vectơ được gọi là bằng nhau khi và chỉ khi

    Hướng dẫn:

    Hai vectơ được gọi là bằng nhau khi và chỉ khi: Chúng cùng hướng và độ dài của chúng bằng nhau.

  • Câu 11: Thông hiểu
    Tìm điều kiện chính xác

    Cho bốn điểm phân biệt A,\ B,\ C,\ Dvà không cùng nằm trên một đường thẳng. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để \overrightarrow{AB} =
\overrightarrow{CD}?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AB} = \overrightarrow{CD}
\Rightarrow \left\{ \begin{matrix}
AB \parallel CD \\
AB = CD \\
\end{matrix} ight.\  \Rightarrow ABDC là hình bình hành.

    Mặt khác, ABDC là hình bình hành \Rightarrow \left\{ \begin{matrix}
AB \parallel CD \\
AB = CD \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AB} =
\overrightarrow{CD}.

    Do đó, điều kiện cần và đủ để \overrightarrow{AB} = \overrightarrow{CD}ABDC là hình bình hành.

  • Câu 12: Thông hiểu
    Tìm khẳng định đúng

    Cho bốn điểm phân biệt A,\ B,\ C,\ D thỏa mãn \overrightarrow{AB} =
\overrightarrow{CD}. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Phải suy ra ABDC là hình bình hành (nếu A,\ B,\ C,\ D không thẳng hàng) hoặc bốn điểm A,\ B,\ C,\ D thẳng hàng.

    Đáp án sai là ABCD là hình bình hành.

  • Câu 13: Nhận biết
    Tìm đẳng thức sai

    Gọi O là giao điểm của hai đường chéo của hình bình hành ABCD. Đẳng thức nào sau đây sai?

    Hướng dẫn:

    Đẳng thức sai là \overrightarrow{OA} =
\overrightarrow{OC}.

  • Câu 14: Thông hiểu
    Tìm đẳng thức sai

    Cho tứ giác ABCD. Gọi M,\
N,\ P,\ Q lần lượt là trung điểm của AB, BC, CD, DA. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Ta có \left\{ \begin{matrix}
MN \parallel PQ \\
MN = PQ \\
\end{matrix} ight. (do cùng song song và bằng \frac{1}{2}AC).

    Do đó MNPQ là hình bình hành.

    Do đó \left| \overrightarrow{MN} ight|
= \left| \overrightarrow{AC} ight| sai.

  • Câu 15: Thông hiểu
    Tìm khẳng định đúng

    Cho hình vuông ABCD. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Chọn \left| \overrightarrow{AB} ight| =
\left| \overrightarrow{BC} ight|.AB = BC \Leftrightarrow \left| \overrightarrow{AB}
ight| = \left| \overrightarrow{BC} ight|.

  • Câu 16: Thông hiểu
    Mệnh đề nào sau đây đúng?

    Gọi O là giao điểm của hai đường chéo hình chữ nhật ABCD. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Mệnh đề đúng là \left|
\overrightarrow{AC} ight| = \left| \overrightarrow{BD}
ight|. Do độ dài hai đường chéo hình chữ nhật bằng nhau.

  • Câu 17: Thông hiểu
    Đẳng thức nào sau đây đúng?

    Gọi M,\ \
N lần lượt là trung điểm của các cạnh AB,\ \ AC của tam giác đều ABC. Đẳng thức nào sau đây đúng?

    Hướng dẫn:

    Ta có MN là đường trung bình của tam giác ABC.

    Do đó BC =
2MN\overset{}{ightarrow}\left| \overrightarrow{BC} ight| = 2\left|
\overrightarrow{MN} ight|.

  • Câu 18: Vận dụng
    Khẳng định nào sau đây đúng?

    Cho tam giác ABC đều cạnh a. Gọi M là trung điểm BC. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tam giác ABC đều cạnh a nên độ dài đường trung tuyến bằng \frac{a\sqrt{3}}{2}.

    Chọn \left| \overrightarrow{AM} ight| =
\frac{a\sqrt{3}}{2}.

  • Câu 19: Vận dụng
    Đẳng thức nào sau đây đúng?

    Cho hình thoi ABCD cạnh a\widehat{BAD} = 60{^\circ}. Đẳng thức nào sau đây đúng?

    Hướng dẫn:

    Vì tam giác BAD cân và \widehat{BAD} = 60{^\circ}, suy ra tam giác ABD đều cạnh a nên BD =
a\overset{}{ightarrow}\left| \overrightarrow{BD} ight| =
a.

  • Câu 20: Thông hiểu
    Đẳng thức nào sau đây sai?

    Cho lục giác đều ABCDEF có tâm O. Đẳng thức nào sau đây sai?

    Hướng dẫn:

    Đẳng thức sai là \overrightarrow{OB} =
\overrightarrow{OE}.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 22 lượt xem
Sắp xếp theo